Introduced-Fish Studies in Southern Florida Natural Areas

William F. Loftus

USGS-Florida Integrated Science Center Everglades National Park Field Station Homestead, FL

Collaborators

NPS

• Jeff Kline – Everglades N.P.

University

• Joel Trexler; Tim Collins - FIU

NGO

 Jerry Lorenz; Jenn Rehage; Krissy Dunker – National Audubon Society

USGS

• Leo Nico; Shawn Smith – Florida Integrated Science Center

FUNDING: NPS, USGS, US FWS, ACOE

ISSUE: Dozens of Tropical Freshwater Fishes Have been Introduced into South Florida

What are they? How did they arrive here? What are their effects? Why are they successful here? Can anything be done about them?

Introduced Fishes in South FL

31 introduced species reproducing in Florida's waters (Shafland 2002); most are freshwater.

Most are from tropical Asia, South America, and Africa.

Native freshwater fishes originate from temperate North America (35 spp.).

15 introduced species in So. FL natural areas; most in family **Cichlidae**.

Major Sources of Introductions

•Planned Introductions

•Food-fish Introductions

•Illegal or Accidental Introductions

Howard Jelks

•Unknown Source

Department of the Interior • National Park Service DSC • March 2000 • 160, 364, 169, 176 • 20,061A

Sampling Methods

2004

Jewel cichlid

Jaguar cichlid

Temporal Colonizations of the Everglades Region 1960s: Black acara. 1970s: Oscar, walking catfish, spotted tilapia, blue tilapia. Mid-1980s: Mayan cichlid, pike killifish, peacock bass, Mozambique tilapia. Late 90s-00s: Jewel cichlid, jaguar cichlid, brown hoplo, banded cichlid, spotfinned spiny eel.

First-record Locations in ENP

Canals are sites of introduction, dispersal, and refuge for non-indigenous biota

S-174 and S-176 looking north

S-176

C. marulius

O. mossambicus

C. citrinellum

Canal inhabitants that are potential future colonizers of the Everglades.

Monopterus sp.

Risk Assessment

Preventing future introductions rests in identifying potential problems in advance

•Perform taxonomic/life-history/ecology research to understand risks and vulnerabilities.

•Model biology of existing pests to screen future introductions

•Identify new introduction vectors.

Monopterus albus – Asian Swamp Eel

Genetics and life-history studies of diet, salinity tolerance, and reproduction.

Swamp-eel Cladogram (Collins et al. 2002)

Results of Bayesian analysis of combined 16S, 12S, LDHA6 intron, and RAG2 sequence for introduced (black), native range (blue), fish market (orange), and commercially available frozen (red) swamp eels. Purple samples represent additional synbranchid taxa included in the analysis. Values on tree represent posterior probablities of nodes. Mastacembelus erthyrotaenia is included as the outgroup.

Eel Diet Results - % Volume

Major Prey % by Volume (- = < 5%) Tampa Homestead **Miami 1998** Miami 2001 Oligochaeta 9.1 10.6 Amphipoda Palaemonetes paludosus 18.0 5.0 Odonata 11.2 6.0 19.4 Belostoma sp. 9.6 **Other Invertebrates** 7.0 Fundulus chrysotus 19.8 Lucania goodei 9.5 Gambusia holbrooki 5.0 28.8 16.5 Heterandria formosa 5.8 Poecilia latipinna 15.6 Monopterus albus 26.3 Centrarchidae 80.4 21.8 Fish Ova **Unidentified Fishes** 12.9 34.5 **Total Fishes** 80.4 47.6 62.7 90.6

Eel Life History – Food-Web Simulation

Community Effects

Problem: Difficult to demonstrate effects in field with highly variable native fish populations. Effects may be lost in system "noise".

Field and mesocosm experiments will help understand mechanisms that give rise to patterns seen in field collections.

Nesting Patterns Following Introductions

Anhinga Trail Percent of Total Nests

	Pr	e-Introdu	uction	Post-Introduction				
SPECIES	1978	1979	1980	1986	1987	1989	1990	1991
Sunfishes	81	54	85	2	8	3		15
Lgemouth bass	19	46	15	17	35	3	6	
Blue tilapia				79	50	88	28	9
Spotted tilapia					1			1
Mayan cichlid				2	6		66	74
Oscar					1	6		1
No. of nests	145	46	103	47	142	33	112	78

Inverse Relationship of Native and Introduced Fish Catch, Indicating Predation Effects

Year

Catch per unit effort of all fishes and Mayan cichlids from 1990 to 2000 from drop traps in the mangroves north of Florida Bay (Trexler et al. 2000). **Introduced Fishes in Short-hydroperiod** Wetlands: Evaluation of Sampling, Status, and Potential Effects

Use field studies and mesocosm experiments to test the effects of introduced fishes on native fauna.

Tests for predation, nesting disturbance, and indirect effects of introduced species in disrupting native fish behavior.

science for a changing world

Fish CPUE in Rocky Glades Solution Holes

Experimental Design: *Hemichromis* **Predation**

A. Cage Design

B. Experimental Set-up

Control

Existing control methods are ineffective in the open Everglades wetlands with connections to "reservoirs" of colonists.

Eradication is presently impossible except in isolated water bodies.

Research on innovative control methods is needed!

Original wetland system a seasonal savanna or forested wetland, with shallow sloughs and strands that held water much of the year.

ENP Marsh Water Temperatures

Winter Kill of Jaguar Cichlids

Pro-active Measures
Educate public to discourage releases.

•Fund effective, coordinated monitoring.

•Engineer delivery structures that impede access to wetlands.

•Research innovative control methods, as with plants/insects.

•Understand biotic interactions and ecology by experimentation.

•Model existing pests to screen future introductions.