

Biological risk assessment modeling for potentially invasive species

Cindy Kolar Upper Midwest Environmental Sciences Center

Risk Assessment Workshop August, 2005

U.S. Department of the Interior U.S. Geological Survey

Upper Midwest Environmental Sciences Center

Talk Outline

- 1. Why look at biological characteristics?
- 2. Qualitative methods
- 3. Quantitative methods
- 4. Developing and using quantitative models for fishes in Great Lakes
- 5. Exercise: using models for Great Lakes

Hypothesized Characteristics of IS

- Broad diet
- Single-parent reproduction
- High genetic variability
- Phenotypically plastic

- Large native range
- Gregarious
- Long-lived
- Human commensal
- Strategy (r-selection or switch between k- and r-?)
- Individual size (small or large?)
- Population density (constant or boom and bust?)

(from Lodge 1993)

Productive Approaches for Biological Risk Assessments

- Transition step-specific: controls for interstep differences
- Region-specific: controls for speciesecosystem interaction
- Taxon-specific: controls for inter-taxa differences

	PLAN	ITS	BIRDS			
haracters	Establish/Fail	Invasive/Not	Establish/Fail	Invasive/Not		

(modified from Kolar & Lodge, 2001 TREE 16:199-204) Upper Midwest Environmental Sciences Center

	PLAN	TS	BIRDS				
Characters	Establish/Fail	Invasive/Not	Establish/Fail Invasive/Not				
Body mass			+, +, ns, ns, ns -				
Migrating			-, ns, ns, ns, ns 🛛 +				
Len. flowering	+	ns, ns					

(modified from Kolar & Lodge, 2001 TREE 16:199-204) Upper Midwest Environmental Sciences Center

	PLAN	ITS	BIRDS				
Characters	Establish/Fail	Invasive/Not	Establish/Fail Invasive/Not				
Body mass			+, +, ns, ns, ns -				
Migrating			-, ns, ns, ns, ns +				
Len. flowering	+	ns, ns					
Invasion history	y	+, +, +, +					
Family invasive	9	+, +, +, +					
Vegetative rep	ro.	+, +, +					

(modified from Kolar & Lodge, 2001 TREE 16:199-204) Upper Midwest Environmental Sciences Center

	PLAN	ITS	BIRDS
Characters	Establish/Fail	Invasive/Not	Establish/Fail Invasive/Not
Body mass			+, +, ns, ns, ns -
Migrating			-, ns, ns, ns, ns 🛛 +
Len. flowering	+	ns, ns	
Invasion histor	y	+, +, +, +	
Family invasive	9	+, +, +, +	
Vegetative rep	ro.	+, +, +	
Annual (vs. per	.)	ns, ns, ns	
Diet breadth			ns, ns
Diverse climate	es	ns	ns
		(modified fror	m Kolar & Lodge, 2001 TREE 16:199-204)

Upper Midwest Environmental Sciences Center

Using Species Characteristics

- Patterns emerging from focused studies (one taxon, one ecosystem, one region)
- Some species & ecosystem characteristics have consistent association with invaders
- But ability to predict using species characteristics limited by small sample sizes, & a lack of diversity of taxa studied

Talk Outline

- 1. Why look at biological characteristics?
- 2. Qualitative methods
- 3. Quantitative methods
- 4. Developing and using quantitative models for fishes in Great Lakes
- 5. Exercise: using models for Great Lakes

Qualitative Modeling of Biological Risk

- ANSTF Generic Risk Assessment
- Scoring systems such as the Weed Risk Assessment (Australia)
- Common characteristics of invasive species

Qualitative Modeling of Biological Risk

Ricciardi and Rasmussen (1998) – common sense approach

Talk Outline

- 1. Why look at biological characteristics?
- 2. Qualitative methods
- 3. Quantitative methods
- 4. Developing and using quantitative models for fishes in Great Lakes
- 5. Exercise: using models for Great Lakes

Quantitative Modeling of Biological Risk Multivariate Statistical Modeling

- 1. Discriminant Analysis (DA) two or more groups; know membership
- 2. Canonical Discriminant Analysis (CDA) uses new variables
- 3. Logistic Regression (LR) two groups; normality not necessary
- 4. Cluster Analysis (CA) classifies when don't know membership

Quantitative Modeling of Biological Risk Decision Trees: Categorical & Regression Trees (CART)

Upper Midwest Environmental Sciences Center

Rule Sets are Key Elements CART Analyses

1. Splitting each node in tree

Considers all possible splits for EACH variable Ranks by a quality-of-split criterion and splits on top ranked variable

2. Deciding when tree is complete

Overgrows then prunes back

3. Assigning each terminal node to a class outcome

Ex: plurality rule--group with greatest representation determines class assignment

4. Testing

Lots data: build tree with learning sample, then calculate misclassification rate using test sample

Less data: bootstrap cross validation technique

Studies using CART in Biological Abstracts

Comparison of Quantitative Methods

	DA	CART
Two or more groups	X	X
Independent variables	X	Х
Populations are distinct	X	X
Multivariate normality	Х	
Equal covariance matricies	Х	
Mathematical function	Х	
Decision tree		X
Common statistical packages	Х	
Stand alone software or expensive		X

Talk Outline

- 1. Why look at biological characteristics?
- 2. Qualitative methods
- 3. Quantitative methods
- 4. Developing and using quantitative models for fishes in Great Lakes
- 5. Exercise: using models for Great Lakes

Pathways for Introduction of Fishes

Round goby

≈USGS

1. Adjacent watersheds

Grass carp

Weather loach

Productive Approaches: Quantitative Predictions

- Region-specific: controls for speciesecosystem interaction
 GREAT LAKES
- Taxon-specific: controls for inter-taxa differences
 FISHES
- Transition step-specific: controls for interstep differences
 STEPS EXAMINED INDEPENDENTLY

Process of Species Spread

Habitat & Environmental Tolerances:

Life History Characteristics:

- Length at maturity (mm)
- Age at maturity (yrs.)
- Fecundity (annual)
- Maximum yrs. spawn
- Reproductive potential
- Incubation period (days)
- Parental care (scale 1-7)
- Degree of derived characters

Additional Variables:

Whether the genus has history of introduction, establishment, or invasiveness elsewhere

Whether the species has history of introduction, establishment, or invasiveness elsewhere

Upper Midwest Environmental Sciences Center

Database Complete

×	🗷 Microsoft Excel - sornos																			
: 🗷	🕮 Eile Edit View Insert Format Iools Data Window Help																			
: 0	1 🖗 1 🖗 1 🖓		N 🕲 🖏	n I Walker	ply with Char	aes End P	2eview		*											
-																				
		* /* IJI		D	F	F	G	L L			L L		M	N	0	D	0	D	0	-
1	family	common	vector	vector2	eniny	geniny	adlen	nv1 len	i i	- J Inv2	fecund	mayen	repropot	vi toib	longey	mature	range	narcare	iturhid	- 1
2	10	higmouth huffalo	3	0001012	3 .	1	2 392	1991 Ien 196	299	40	575000	<u>падэр</u> 15	8625000		2 20	55	2965651	parcare 6		-
3	25	orangespotted si	4	4	1	1	2 45	75	2	100	2375		7125	- F	5 4	1.5	2359389	3	d	-
4	7	skipiack herring	2	2	2	1	2 290	38	1	100	200000	2	400000	1	4	2.5	1065600	4	, t	-
5	7	blueback herring	4	4	1 :	2	2 280	40	2	64	244000	6	1464000	2	2 9	3.5	436060	5	j 👘	-
6	7	alewife	8	4	1 :	2 :	2 131	77	2	96	13750	5	68750	1	1 7	3	731518	4	,	
7	7	gizzard shad	8	4	1 :	2	2 254	50	2	100	229598	5	1147990	1	I 6	2	3950355	2	2	
8	9	Oriental weather	1	1	1 :	2	2 128	i 68	2	100	150000	9	1350000	2	2 10	2	3396789	4	,	
9	21	gold fish	14	4	4 3	2	2 175	69	2	100	24000	5	120000	2	2 6.8	2	22898480	7		
10	21	common carp	13	4	1 :	2	2 543	28	2	56	896000	17	15232000	2	2 20	4	7377330	9	,	
11	21	ghost shiner	1	1	·	1	2 48	73	2	100	760	2	1520	1	I <u></u> 3	2	1915288	1		
12	21	rudd	5	4	1 :	2	2 <u>115</u>	56	2	91	164000	9	1476000	1	I 10	2	9174585	3	J	
13	21	fallfish	1	1	1 2	2 :	2 130	34	2	53	3767	3	11301	6	6 6	4	658964	1		
14	22	fourspine stickle	3	3	3 3	2 :	2 51	100	2	100	433	1	433	6	5 1.5	1	771802	4	·	_
15	28	round goby	11	4	1 :	2 :	2 160	90	2	100	4985	2	9970	6	5 4	2.5	376312	6		_
16	28	tubenose goby	8	4	1	2	2 96	66	2	100	114	4	456	6	6 5	2	349457	2		-
17	4	shortnose gar	4	4	1	2 :	2 356	78	2	91	35230	5	176150	2	2 7	3	1288424	4		-
18	24	white perch	3	3	3	2	2 135	56	2	100	100000	8	800000	2	2 9	2	376666	4		_
19	14	rainbow smelt	11	4	1	2	2 140	4/	3	100	20974		104870		2 /	2.3	618781	4		-11
20	26	ruffe	3	2		2	2 80	90	2	100	26595	6	159570	4	2 /	2	18940361	(-
21	1	sea lamprey	8	4	1	2	2 439	8.4	2	15	126705	1	126705		1 9	9	2072735	1		-
22	20	western mosquit	(3	3	1 . 1 .	2 .	2 52		3	100	100	1	100	1		1	2709431	4		-
23	14	pink saimon	9	4	+ .	2	2 457	66	4		1389	1	1389	5	2	Z	12267976	3		-
24	14	cono salmon	11		1	I . 1	2 460	40 5		1 59	2970	ן רב	2970		9 4	5	220/9/0			-
25	14	rainbow trout	11	4	1	1 . 1 .	2 400	1 25	3	40	2759 EE 41	2.0	EE 41		+ / 1 A	4	11757/10	1		-
20	14	Alaeka blackfieb	1	1	• ·	1 . 1	2 300	50		84	200	6	1200	-	+ 4) 9	- 4	86477	3	1	-
28	11	amorican ool	7		1	1	1 120	7 7		14	17500000	1	17500000	4	. 0	9	5008803	4		-
20	7	American chad	3		• 3	, 2	2 460	7	2	50	50000	2	100000	-	85	5	1897597	2	,—	-
30	21	suckermouth mit	1	1		2	2 75	82	2	100	1640	3	4920	1	45	2	1507849	1		-
31	21	hullhead minnow	1	1		2	2 58	82	2	100	358	1	358		5 2	15	2102450	6	d	-
32	21	grass carp	6	4	1	2	2 760	26	1	44	750000	6	4500000	1	10	5	718426	3	(-
33	12	chain pickerel	1	1		1	1 350	49	2	72	7000	5	35000	1	8	3.5	1332950	2	2	-
34	11	white catfish	1	1	i :	2	2 208	39	2	66	3250	8	26000	1	1 11	4	833685	3	i l	
35	24	striped bass	1	1		2	2 424	22	2	51	440000	7	3080000	1	1 9	3	678084	1		1
36	15	Atlantic salmon	3	3	3	1	2 262	30	4	49	1779	6	10674	1	1 9	4	21834100	6	il	
37	15	mountain whitefis	1	1	· ·	1	1 276	i 36	4	60	5000	14	56000	1	I 17	3.5	187132	4		_
38	15	arctic char	1	1		1	2 290	38	4	59	2726	5	13630	4	1 19	6	947002	4		
39	15	splake	3	3	3	1	2 292	. 59		81	1246	7	8722	4	1 9	3	382548	5	/	
40	15	chum salmon	1	1		1	2 696	i 40	4	86	2535	1	2550	6	5 4	4	747517	1		
41	15	masu salmon	1	1	· ·	1	2 600	23	З	57	1500	1	1500	4	4 3.6	3	384753	3	/	
42	15	cutthroat trout	3	3	3	1 :	2 409	54	2	80	1400	3	4200	4	1 5.5	3	142652	5	·	
43	15	arctic grayling	3	3	3	1	1 310	33	2	52	5000	4	20000	2	2 11.5	5	1635243	5	·	
44	22	threespine stickl	4	4	1	2 :	2 50	100	2	100	225	3	675	6	5 3.5	1	24218118	4	1	-
45	15	brown trout	11	4	1 2	2	2 408	41	3	61	3700	4	14800	3	3 13	2.5	16783702	8		
46	21	tench	2	2	2 3	2	2 459	10	1	20	420000	9	3780000		12	4		0		-
4/																				-
48						-											1		-	
H	< ▶ ▶ \\so	rnos /									1	<		1111					>	11

.

NUM

Question

1. Are fishes that successfully invaded the Great Lakes different from those that have failed?

Establishment of Fishes

Successful (n = 24)

Failed (n = 21)

rainbow smelt **≥USGS**

Atlantic salmon

Upper Midwest Environmental Sciences Center

Discriminant Function

- Fast relative growth rate
- Wide salinity tolerance
- Wide range of water temperature tolerance
- Species has a history of invasiveness

Overall Correct Classification = 87%

Question

2. Are fishes that quickly spread through the Great Lakes different from those that spread slowly?

Overall correct classification: 89%

Quickly spreading (n=9)

Slowly spreading (n=8)

Questions

3. Are fishes that are perceived as a nuisance in the Great Lakes different from those that are not?

Nuisance (n=8)

Non-nuisance (n=15)

Overall correct classification: 91%

CART Decision Tree for Establishment

≊USGS

Overall correct classification rate 96%

Predictive Models Developed

1. Establishment

Discriminant function

• CART tree

2. Spread

Discriminant function

3. Impact

Discriminant function

Application : Ponto Caspian fishes

66 out of 110 species

Establishment of Ponto-Caspian Fishes

Low risk	Medium risk
(no models)	(1 model)
29 species	15 species

22 species

High risk

(both models)

8 minnows 3 gobies

Upper Midwest Environmental Sciences Center

Quick Spreading & Nuisance Fishes

22 species common to both models

Highest Risk Ponto-Caspian Fishes

Tyulka (*Clupeonella cultriventris*)

Monkey goby (Neogobius fluviatilis)

Eurasian minnow (*Phoxinus phoxinus*)

Black sea silverside (Atherina boyeri)

European perch (*Perca fluviatilis*) **SUSGS**

Uses of Biological Risk Models

Intentional Pathways of Introduction

- ✓ Basis for developing regulations
- ✓ Basis for developing best management practices
- ✓ Basis for developing introduction policies

Unintentional Pathways of Introduction

- ✓ Basis for developing regulations
- Basis for developing best management practices

Statistical Models & Decision Trees

Advantages

Any group of plants or animals

Any stage of invasion process

Not difficult to construct with

software

Limited data collection needed

or screening species

Limitations

For establishment stage, need data on 'failed' introductions

Substantial data collection to develop models

System, region, or pathwayspecific

Talk Outline

- 1. Why look at biological characteristics?
- 2. Qualitative methods
- 3. Quantitative methods
- 4. Developing and using quantitative models for fishes in Great Lakes
- 5. Exercise: using models for Great Lakes

Combination Decision Tree

Upper Midwest Environmental Sciences Center

Evaluation of Analyses

Jack-knife classification rates

	Question S	p. characteristics	Correct +	Correct	False +	False -
1.	Establishment DA	t Rel. growth (+), Salinity tol. (+), Range temp. tol. (+) Sp. history invas.(+)	75% ,	91%	25%	9%
	CART	Rel. growth (+), Diet breadth (+), Min. temp. (-)	96%	71%	4%	29%
2.	Spread DA	Max. temp. tol. (-), Rel. growth(+), Range temp. tol. (+)	78%	100%	22%	0%
3.	Impact DA	Egg diameter(-), Min. temp. tol. (-), Salinity tol. (+)	92%	90%	8%	10%