An Update: Status of Asian Swamp Eels in Georgia

Byron J. Freeman^{1,2}, Carrie A. Straight¹ and Thomas R. Reinert¹ ¹Institute of Ecology, University of Georgia ²Georgia Museum of Natural History

Spring Gulf and South Atlantic Regional Panel Meeting April 5-6 2006 Georgia Museum of Natural History

Asian swamp eels Summary

Mid-level predator – Primarily feeding on invertebrates in ponds New food item for wacking birds and others – Observed herons feeding on eels Breecling in 3 ponds and possibly marsh – Young-of-year eels captured in all areas

Image © Andrew Coupe Photography AcclaimImages.com Photography

Asian swamp eels in Georgia

Introductions into the United States

Strict consensus of 24 most parsimonius trees based on haplotypes from 16S gene sequenced from all unique swamp eel haplotype-locality combinations.

Clade A (Atlanta) has > 10% genetic distance from other clades. Sequence for Atlanta individuals is identical to Nara prefecture in Japan indicating Japan or Korea as internitesteeodrce. SE Asia

From Collins et al. 2001, Conservation Biology Vol 16, No 4. Pp 1024-1035.

Atlanta (Japan)

Asian swamp eels in Georgia Chattahoochee Nature Center

Discovered 1994
Introduced <u>c</u>. 1990
Breeding population in 3 ponds
Direct access to marsh

Asian swamp eels in Georgia Chattahoochee Nature Center

- UGA studies began in 1998
- Current study objectives:
 - Assess population status
 - Assess potential impacts to native fauna
 - Evaluate control / eradication options

Photo credit: B. Y. Tang

Nonopterus albus old as live food Singapore 25/7/2004

Chattahoochee Nature Center

Locations of Ponds within the Chattahoochee Nature Center

Alsiansws-Alsia Shaitanoochee Nature Center

Marking Techniques

Passive Integrated Transponder (PIT)

Eels >35cm total length

Visible Implant Elastomer (VIE)

Eels 11-35cm total length

Size Classes, Capture Methods, Locations

Capture Methods and Size Classes by Location

FIG. 1. Dual isotope plot of biota from Lake Apopka. Error bars represent one standard deviation unless smaller than symbol. A, Cattail; B, diatoms; C, *Microcystis*; D, small cyanobacteria (bulk plankton); E, zooplankton; F, grass shrimp; G, gizzard shad; H, redear sunfish; I, least killifish; J, bluegill sunfish; K, blue tilapia; L, brown bullhead; M, black crappie; N, white catfish; O, largemouth bass; P, Florida gar. Trophic levels were assigned based on a calculated 3·3‰ increase in δ¹⁵N from one trophic level to another.

Gu, B., C. L. Schelske And M. V. Hoyer. 1996. Stable isotopes of carbon and nitrogen as indicators of diet and trophic structure of the fish community in a shallow hypereutrophic lake. Journal of Fish Biology (1996) 49, 1233–1243

Stable Isotope Structure of Beaver Pond

Previous gut analysis study

Omnivorous carnivore

 Corresponds to stable isotope study of eels captured in Beaver Pond

Eggs in Bubble Nest

Approximately 48-hours PRE- hatch larval Monopterus sp.

Approximately 5mm in diameter

Approximately 12-hours post hatch larval *Monopterus* sp. Grids in background are 2mm square.

Asian swamp eels in Georgia Control Options

Swamp eels are highly adaptable to a diverse number of environments.

burrowing, air breathing, travel on land

Piscicides (rotenone, antimycin)
Trapping (removal)
Dredging / Draining
Electric barriers
Modified outflows

Asian swamp eels in Georgia Lab Studies

Effects of Antimycin-A

- Tested young eels (3.53 ± 0.98 cm SVL)
- Positive controls: golden shiner (Notemigonus crysoleucas)
- 0, 2, 5, 10, 15, 100 ppb (nL/L) Fintrol®
- 44 h observation
- Aquabiotics, Inc. recommends:
 - 5 ppb for control of scaled fishes
 - 15 ppb for hardier fishes

Asian swamp eels in Georgia Lab Studies

Initial study (0, 2, 5, 15 ppb): 100% eel survival

picture by J.F. Scarola

Asian swamp eels in Georgia Lab Studies

Conclusions

Young eels unaffected by Antimycin
Effective on positive controls
Chemical control may not be option

Asian swamp eels in Georgia Containment Options

Eliminate access to marsh - Reconfigure Kingfisher outflow volituo inernuo ecolo -Install deep-water screened standpipe - Redirect Frog Pond Outflow • Elevate pond berm Direct outflow into Kingfisher - Erect silt fences

Asian swamp eels in Georgia Containment Options

Eliminate access to marsh - Reconfigure Kingfisher outflow Close current outflow Install deep-water screened standpipe - Redirect Frog Pond Outflow • Elevate pond berm Direct outflow into Kingfisher - Erect silt fences

Asian swamp eels in Georgia Control Options

Reduce total numbers

Spring-time electrofishing
Removes spawning adults
Summer leaf-litter traps
Removes spawned juveniles

©2003 matt@muellerworld.com

Asian swamp eels in Georgia Conclusions

- la simerio brabnate ot inateleer elee
- Eels susceptible to trapping

 Adults: Electrofishing
 Juveniles: Leaf-litter traps

 Ponds can be reconfigured

 Eliminates access to marsh
 Greatly reduces immigration potential

If all else fails...

Asian swamp eels in Georgia Acknowledgements

UGA

Rebecca Bourguin
Renée Machyousky
Jessica Melgey
Casey Storey
Jay Shelton

CNC
Henning von Schmeling
GA-DNR
Ted Hendrickx
Jim Long

Funding & Support

