A Model Screening Process to Rapidly Assess Risks of Nonnative Species Establishment and Impacts

> Michael Hoff Mississippi River Basin Panel on ANS U.S. Fish and Wildlife Service

Presentation Overview

- Summarize MRBP's Risk Analysis Process
 - With emphasis on Rapid Risk Screening Process
- Describe tools useful to support decisions to implement that process
- Describe Next Steps for MRBP
- Past recommendation to ANSTF
- Example Risk Screening
- Demonstration of CLIMATE software

What is a Screening Process?

A screening process

 is a risk assessment system designed to RAPIDLY evaluate the invasiveness (establishment and impact) potential of a nonnative species,

prior to its importation into a jurisdiction

- Results of risk screening can be used by:
- Governments and industries to determine whether risk, of a nonnative species, impact on native species and ecosystems, is:
 - Uncertain
 - Low, or
 - High

- Governments can use results to regulate
- Industries can use results to keep "green"
- Both groups can work together

- If species impact risk is Uncertain, then:
 - a more detailed risk assessment is needed
 - ANSTF developed a protocol in 1996
 - -Time to revisit this approach
 - » Use current scientific, information technology, and risk assessment advancements

- If species establishment and impact risk is clearly Low, then
 - the species is acceptable for importation and/or use in trade

- If species impact risk is clearly High, then:
 - a decision is needed about either voluntarily preventing/halting trade (industry), or regulating trade (government)

MRBP Risk Analysis Process

- 1. Identify Species for Screening
- 2. Rapid Screening Process
 - a. If risk is clearly low, then no action
 - b. If risk is clearly high, then Step 5
 - c. If risk is uncertainty, then Steps 3-4
- **3**. Prioritize species for Detailed Risk Assessment
- 4. Agency Conducts Detailed Risk Assessment
- 5. Develop Agency Actions to Regulate and Manage
- 6. Implement Agency Priority Actions
- 7. Evaluate Agency Actions, and Adapt Management Programs

Rapid Screening Process

Model process for screening of live organisms.

Best Predictors of Species Invasion

- For a species, best predictors of invasiveness are:
 - History of invasiveness
 - Climate-habitat match for source and sink

Model process for screening of live organisms.

Tools Needed & Available

Scientific basis for survival?

Climate and Habitat Matching Tools - "CLIMATE/CLIMATCH" Software

- Developed by Australian Gov.
- Software matches climates of userselected regions around the world
 - 16 variables available

Predicted to develop self-sustaining population?

Output from "Climate"

- Match of Ponto-Caspian area with North America
 - Used data from all meteorological stations
 - And two parameters
 - -Min. temp. coolest month
 - -Max. temp. of warmest month

Tools Needed, & Being Developed

Scientific basis for survival?

 $\overline{}$

Predicted to develop self-sustaining population?

Climate and Habitat Matching Tools

Habitat Software - Not yet accessible

- "FRESHmap" being developed by Canadian DFO
- Will match river basins of regions around the world

BETA version soon

Tool Developed

NZ mudsnail potential range: GARP model output

Tool Developed

Scientific basis for survival?

Climate and Habitat Matching Tools

Habitat Models

Maximum Entropy

 Projects species geographic distributions with presence-only data

Predicted to develop self-sustaining population? - Appears better predictor than GARP

Lowland sloth predicted range: Maxent model output

Tools Developed

Scientific basis for survival?

 \bigcirc

Habitat Models
Limiting factors

Climate and Habitat Matching Tools

 E.g., Model shows low risk of Asian carp establishment in softwater areas of U.S.

Predicted to develop self-sustaining population?

Decision-Support Tool Available

Prior Invasiveness (of a species or its congeners)

Self-sustaining populations will cause harm?

- Not yet web accessible
 - Global Register of Invasive Species (IUCN, ISSG)
 - Available for 16,051 invasive species
 - 38,606 annotated geographical records

Decision-Support Tools Available

- Prior Invasiveness (of a species or its congeners)
 - Web accessible now

Self-sustaining populations will cause harm?

- Fishbase
 - -30,600 Species
- Global Invasive Species Database (IUCN)
 - 500 invasive species
- FAO Database on Introductions of Aquatic Species (DIAS)

-5,612 introduced species

Decision-Support Tools Available

Prior Invasiveness (of a species or its congeners)

Self-sustaining populations will cause harm?

- Web accessible now
 - Googlescholar
 - Search for genus or genus and species along with "invasive" or other search words

Decision-Support Information Available

Risk Assessments conducted by others
 – e.g., UK, Australia, others

Self-sustaining populations will cause harm?

Rapid Screening: Accounting for Climate Change

- Can use "CLIMATE/CLIMATCH" Software to screen species under various climate scenarios
 - e.g.,
 - could compare min & max temps in existing range(s) of a species

with +2° C in States, US (or US ecosystems)

Other Tools Available

- Semi-Quantitative/Quantitative Risk Assessment
 - Freshwater Fish Risk Assessment
 - Developed in UK based on Australian weed RA
 - Expert-based scoring approach using literature
 - Score is compared with critical values

acience series technical report no.129

Risk identification and assessment of non-native freshwater fishes: concepts and perspectives on protocols for the UK

O.H. Copp, R. Garthwaite and R.E. Gozlan

Other Tools Available

Quantitative Risk Assessment Tool (QBRAT)
 – Developed by DFO Canada

Other Tools Available

- Trait-Based Models
 - Examples for Great Lakes
 - Mussels
 - -Based on fecundity (Keller and Lodge)
 - Fishes
 - Based on quantitative, decision-tree approach (Kolar and Lodge)

Next Steps - MRBP

- "Step 3: Prioritization for Detailed Risk Assessment
 - "The Panel directs the Prevention and Control Committee to develop a ranking system (using criteria and weightings for those criteria)....to prioritize the list of species recommended for detailed risk assessment..."

Model process for screening of live organisms.

Next Steps - MRBP

- Will continue to adapt the Risk Analysis system (including rapid screening process)
 - Will add decision-support tools and other materials, when they become available

Recommendation to ANSTF

- From MRBP and GLP:
 - "If any member of the ANSTF will issue a RFP for AIS research, then we recommend consideration of..." a project

Recommendation to ANSTF

- To
 - (Recommended Objectives of Project Funded by RFP):
 - Scientifically evaluate existing Rapid Screening Processes
 - Report on strengths and weaknesses of each screening process

Recommendation to ANSTF

- Recommended Objectives of Project Funded by RFP:
 - Use results to recommend how to, or develop, gold standard screening process
 - Could be several of these
 - One for each of several ecosystems in US

Additional Tools Needed

- The Coarsest Screen:
 - History of Invasiveness
 - Climate-Habitat match
- Development of additional/more effective/more efficient TOOLS

Rapid Screening: Use of Tools, and Results

History of Invasiveness Using GRIS, GISD, Fishbase, Googlescholar (Simple Example)

Database Output	History of Invasiveness
Not listed in GRIS, GISD; "Harmless" in Fishbase; no hits in Googlescholar	N
Listed in GRIS, GISD, and/or "Potential pest" in Fishbase; many hits in Googlescholar	Y

Simplest Screening Model (For Discussion ONLY)

History of Invasiveness	Climate Match	Certainty	Action
Y	Н	Н	Regulate
Υ	Μ	Н	Regulate
Y	L	Η	Restrict Use? (or Regulate?)
N (but history of >[10] introductions)	Н	Н	Allow (could restrict use)
N (but history of >[10] introductions)	Μ	Н	Allow (could restrict use)
N (but history of >[10] introductions)	L	Н	Allow

Australian Model

4. Freshwater fish
4.1 Factors affecting the establishment success of exotic freshwater fish
4.1.1 Key factors affecting establishment success
4.1.2 Other factors potentially affecting establishment success
 4.2 Risk assessment for the establishment of exotic freshwater fish introduced to Australia
4.4 Instructions for using Exotic Freshwater Fish Model 2 to rank establishment risk for fish introduced to Australia Recommended by Originator 4.5 Factors affecting assessment of pest status of introduced freshwater fish
4.5.1 Reliability of evidence116
4.5.2 State of knowledge on impacts118
4.5.3 Types of environmental impact and their significance for impact risk assessment
4.5.4 Other factors having potential value for assessing the risk of impacts by introduced exotic fish
4.6 Discussion of factors affecting pest status for introduced freshwater fish

Australian Model 2: Probability of Establishment

- P(estab.) = 1(1 + exp (3.2974 2.9611 * (prop.species) 3.2948 * (prop.family) s(climate 6) family random effect
 - Using Data for fish introduced into 10 countries
 - Where...

Australian Model 2: Probability of Establishment

- Where:
 - Prop.species = No. countries establ./total no. countries where introduced
 - Prop.family = no. of success. introductions into all countries in the family/total no. of introductions to all countries of species in the family
 - Climate 6 = Sum of 5 scores (Categories 6-10) from CLIMATE
 - Family Random effect = Calculate for only families used in a pub.—analysis of species introduced into 10 countries

Australian Model 2: Probability of Establishment

- Now, with excruciating detail I will calculate the result for round goby
- P(estab.) = 1(1 + exp (3.2974 2.9611 * (prop.species) 3.2948 * (prop.family) s(climate 6) family random effect
- Just kidding...

For actually established populations in 10 countries (n=256 populations), Australian P(estab) and: 1) categories of establishment risk, and 2) % of species that would have been recommended for rejection (i.e., regulation)

For populations established in 10 countries (n=255 populations), Hoff's Climate 6 risk categories, and % of species that would be

Climate 6 Scores with Hoff's Risk Categories, and Proportion of actually established populations (in 10 Countries, N=255 populations) that would have been rejected

Risk Screening Examples: Round Goby and Violet Goby—should Montana care?

Round Goby Range: Eurasia

Violet Goby Range: Atlantic Ocean and Gulf

Simplest Screening Model

History of Invasiveness	Climate 6 (Yours or Hoff's)	Certainty	Action
Y	Н	Н	Regulate
Y	Μ	Н	Regulate
Y	L	Н	Restrict Use? (or Regulate?)
N (but history of >[10] introductions)	Η	Η	Allow, but restrict use?
N (but history of >[10] introductions)	Μ	Η	Allow but restrict use?
Ν	L	Н	Allow

Risk Assessment: Round Goby in MT

Risk Assessment: Violet Goby in MT

History of Invasiveness	CLIMATE Match	Certainty	Action
Not listed in GISD	L (Climate	Н	Allow
and as "harmless" in Fishbase; no hits for "invasive" in googlescholar)	(Cinnate 6=0; N=58)		
Gobioides broussonnetii			(no da Match No. od No. od No. od No. od No. od No. od No. od

Demo: CLIMATE Software analysis of Climate Match in Source and Sink Locations Needs to Implement MRBP Version of Rapid Screening (Coarsest Screen)

- Use CLIMATE, Fishbase, GISD, (Access to GRIS?), Googlescholar
- Development of YOUR categories for Climate 6 Risk
 - Using CLIMATE

Options for Next Steps

- Do Nothing
- I can come and train
 - You in your location
 - Or GSAP??
- You could use, adapt, or not use this screening approach
- Contact me, to discuss
 - Michael_Hoff@fws.gov

Screening: A 50-foot, 38-ton gorilla for invasive species prevention

Mississippi River Basin Panel's Risk Analysis Process

- Working Version of Document available at <u>http://wwwaux.cerc.cr.usgs.gov/MICRA/MRBP/MRBP_W</u> <u>orking_Version_Model_Risk_Assess._&_Management_</u> <u>Process_5-12-09.pdf</u>
- Or google Mississippi River Basin Panel's website, and look for the link

Questions and Discussion