Freshwater Aquarium Hobbyists and Invasive Species in the Houston-Galveston Region

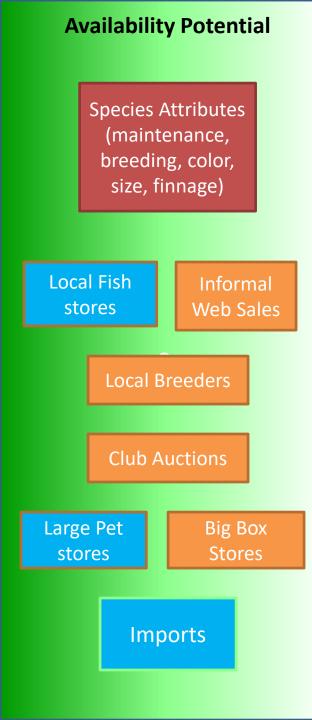
<u>HARC</u>

Pris Weeks Lovette Miller Stephanie Glenn Lisa Gonzalez Ian Manuel Fitch Niki vonHedemann Kali Frost UNT Michael Monticino **Travis Cogdill** TAMU Heather Prestridge AQUAZOO **Prosper DeBee** Shannon DeBee

Funded by TPWD STATE WILDLIFE GRANTS PROGRAM

 $\left(\left| \begin{array}{c} \mathbf{H} \right| \mathbf{A} \right| \mathbf{R} \left| \begin{array}{c} \mathbf{C} \right| \right) \right)$

Pilot project funding by GSARP


Long term goal: Develop an Invasive Potential Scorecard integrating ecological and human dimensions

• Current project:

- 1. <u>Availability potential</u> Identify social and market networks through which aquarium species are exchanged
- 2. <u>Release potential</u> Identify factors driving release of NNIS by pet owners
- 3. <u>Survival /reproduction potential</u> Develop methodology to determine potential of invasion for a species released into the environment
- 4. <u>Participatory Research</u> Identify and evaluate potential strategies to discourage release

Future steps to reach long term goal:

- 1. Use results from current project to create Invasive Potential Scorecard
- 2. Identify and evaluate candidate management strategies using the Invasive Potential Scorecard

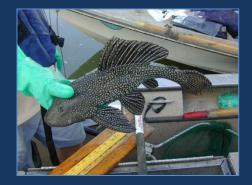
Species Attributes (personality, size)

Release Potential

Aquarium Owners' Attributes (aquarist identity, personal circumstances, where buy fish, where get information, how they frame release)

Survival and Reproduction Potential

Species E Attributes


Ecosystem Attributes

Ability to survive in released environment

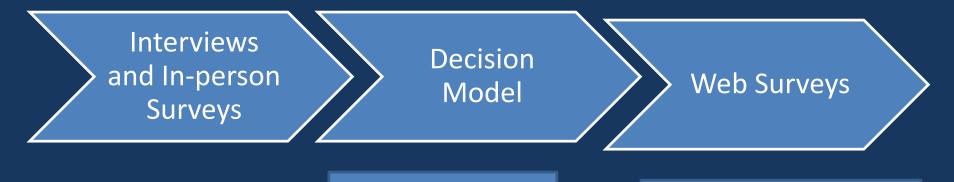
Reproduction Capability

- Methodology
 - Surveys of sources for live aquarium fish
 - Local breeders
 - Local fish stores (Independent 4)
 - Local fish stores (Chain 9)
 - Internet sales by individuals
 - Discount stores (9)
 - Aquarium society auctions
 - International import data:
 (Dallas, Houston, Del Rio, El Paso, Laredo)

Imports – Houston

Name as Shipped	<u>Common Name</u>	<u>Number of</u> <u>Shipments</u>	<u>Total</u>
Tropical Fish	Tropical Fish	1,112	189,371
Non-cites fish	Non-cites Fish	328	130,122
Polypterus sp.	Bichir	298	9,944
Synodontis sp.	Catfish (squeaker)	289	32,906
Pseudotropheus sp.	Mbuna cichlid	160	29,342
Cichlasoma sp.	Cichlid (new world)	158	24,206
Pelvicachromis sp.	Cichlid (old world)	143	17,435
Aulonocara sp.	Peacock cichlid	121	8,716
Haplochromis sp.	Cichlid (old world)	103	6,458
Corydoras sp.	Cory cat	93	14,704

• Auction Sales (2011)


<u>Common Name</u>	<u>Scientific Name</u>	Family	<u>Times</u> Offered
Ancistrus (albino)	Ancistrus sp.	Loricariidae	10
Guppy	Poecilia reticulata	Poecilidae	8
Aeneus cory	Corydoras aeneus	Callichthyidae	4
Julidochromis marlieri	Julidochromis marlieri	Cichlidae	4
Gold severum	Heros severus	Cichlidae	3
Green severum	Heros appendiculatus	Cichlidae	2
Marbled angelfish	Pterophyllum sp.	Cichlidae	2
Melanochromis johanni	Melanochromis johanni	Cichlidae	1
Parachromis	Parachromis sp.	Cichlidae	1
Demasoni	Pseudotrophis demasoni	Cichlidae	1

Number of

• Species ranked by number of sources.

			<u>Number of</u>
<u>Common Name</u>	<u>Scientific Name</u>	<u>Family</u>	<u>Sources</u>
Betta	Betta splendens	Osphronemidae	6
Yellow Labidochromis	Labidochromis caeruleus	Cichlidae	6
Guppy	Poecilia reticulata	Poeciliidae	6
African Peacock	Aulonocara sp.	Cichlidae	5
Discus	Symphysodon sp.	Cichlidae	5
Platty	Xiphophorus sp.	Poeciliidae	5
Oscar	Astronotus ocellatus	Cichlidae	4
Assorted Mbuna	Pseudotropheus sp.	Cichlidae	4
Jack Dempsey	Rociooctofasciata	Cichlidae	4
Tropheus	Tropheus sp.	Cichlidae	4

Release Potential

Characterize aquarists

Identify values & knowledge that drive release

Input into the decision model

Quantify values and knowledge affecting release decision

Validate interview observations

Understand value trade-offs and perceptions of consequences **Aquarist Identity**

Darwinist Values

Environmentalist Values

Trust in Science

Release Potential

Methodology

- Multi-stage cluster approach to identify aquarists
- Created general population list totaling 201 of people who have aquariums or is thinking of getting one...drawn from 62 zip codes in the Houston region
- Using **stratified** random sampling based on **venues**, picked the research sample for the second round....sample consisted of 30 persons
 - …allows the research sample and findings to better represent the various subgroups of neophytes and hobbyists
- Survey/interview questionnaire: 31questions.....18 on release lasted 1-2 hours; conducted two rounds with each interviewee

In-Person Survey Summary Findings

- Trade/selling is preferred option but release is a close second
- Release means giving a fish a fighting chance If the fish dies, it is because of survival of the fittest
- Release benefits nature because it adds to diversity; nature is always changing; helps prevent extinction
- People will drive long distances to release a fish in an appropriate body of water
- Virtually no one was worried about legal consequences of release because they knew they would not get caught

Release Decision Model

Assessing Value trade-offs

• Convenience

- Fish well-being
- Environmental impact
- Legal consequences

Value Clusters

Balanced

- Fish well-being was most important value
- Balanced with moderate weight on environmental impact and convenience
- Majority were identified at the Houston Aquarium Society auction
- Expedient
 - Nearly as concerned about convenience as fish well-being
 - Little value placed on environmental impact
 - Identified at Walmart or Petco
 - Lowest perceived likelihood of n0 environmental impact of release to waterway
 - Highest perceived likelihood of bad fish well-being if released

Value Clusters

• Fish companion

- Well-being of the fish is by far the most important value
- Moderate weight placed on environmental impact and legal consequences
- No substantive consideration of convenience
- Identified at local fish stores or Petco
- Environmental
 - Fish well-being was most important
 - Nearly equal weight on environmental impact
 - Convenience and legal consequences are given low weight
 - Identified at the Houston Aquarium Society auction or local fish stores

Value Clusters

Convenience Weight

Legal Consequences Weight Fish Well-being Weight Fish Companion Environmental Impact Weight Environmental

Expedient

Model Summary Findings

- Well-being of fish is the primary value considered in making a relinquishment decision
- Environmental impact of release is a significant but secondary value
- Stressing legal consequences of release is not likely to effect release decision
- Less likely to release if...
 - Perceive that fish will not thrive
 - Perceive more likely to have negative environmental impact
 - Increased connections to aquarium community

Web-based Survey

- Survey was designed to capture a few dimensions of 5 primary constructs and determine what relationship these had to each other.
 - Aquarist Identity
 - Darwinist/Survivalist Values
 - Environmentalist Values
 - Trust in Science
 - Release Potential

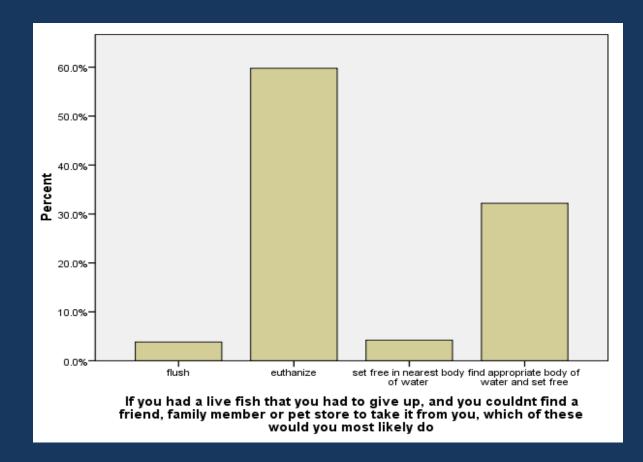
The Sample

• N = 261

- US respondents: N = 211 (80%)
- Texas respondents: N = 103 (40%)
- Sex:
 men = 60%
 women = 40%

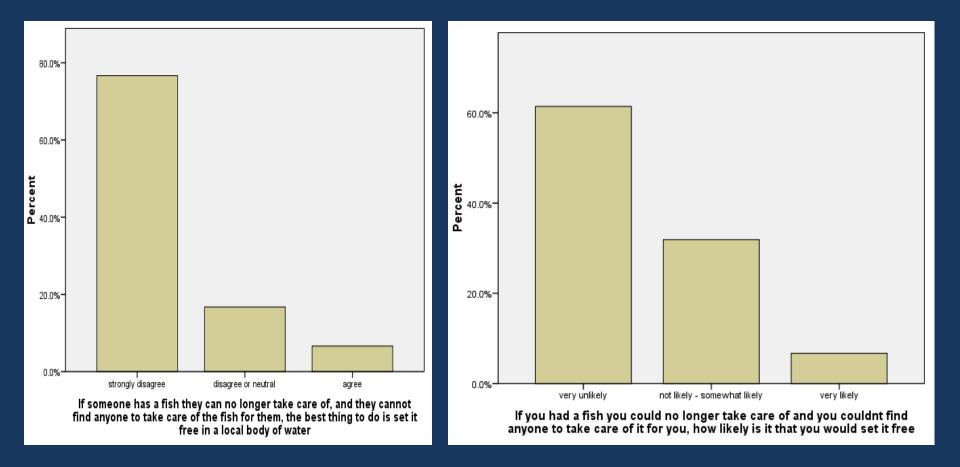
 Age:
 mean = 32
 median = 29
 - US*: mean = 36.6
 - Range: 98 minimum = 12

– Aquarium Owners: 94%


maximum = 110

median = 35.9

*Source: http://www.census.gov/population/estimates/nation/intfile2-1.txt


Release Patterns

Nearly 35% of respondents admitted they would release if they couldn't find someone to take a fish from them. 30% would go so far as to seek out a body of water that seemed appropriate for the fish.

Release Patterns

Interestingly, although respondents were overwhelming opposed to release (80%), only 60% said they were very unlikely to release.

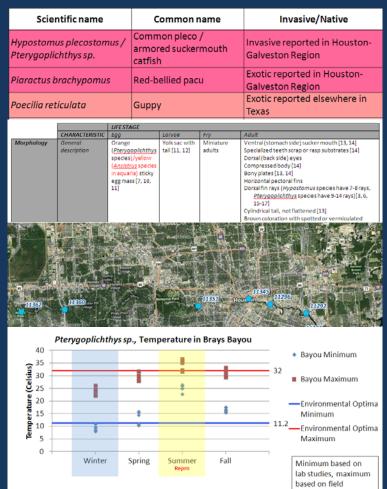
Factors that Raised a Person's Release Potential

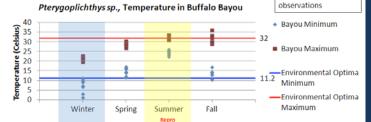
- Darwinist/survivalist values
 Strong species have a right to survive
- Emotional attachment to fish
- Purchase fish from big box stores
- Get information from big box stores
- Not connected into aquarium community

Factors that Lowered a Person's Release Potential

- Valuing stability of the ecosystem
- Viewing the environment as a public resource
- Being a serious aquarist
- Using local fish stores and web for information

Survival and Reproduction Potential –


A Methodology for Determining Survival Potential of Aquarium Fish Released in Houston's Bayous


- Determine species' ability to become established in Texas waterways
- Develop a <u>Survival Potential</u> methodology
 - Combine with the <u>Availability</u>
 <u>Potential</u> and <u>Release Potential</u>
 aspects of the project
 - Use as an assessment tool for multiple species and areas
 - Inform education and outreach efforts
 - Support prevention strategies

Methodology

- 7 species chosen
 - Based on invasion status
 - Species attributes collected through lit review and compiled into species attribute charts
- Local habitat characterized
 - Stream water quality data collection and analysis
- Environmental optima charts developed
 - Compare species attributes to local habitat characterization (e.g. minimum winter water temperature compared species requirements)
- Species survival and reproduction potential combined with availability and release potential

Survival and Reproduction Potential Conclusions

- Methodology shows promise
 - Using this methodology, one can relate species optima to environmental conditions
- Species and habitats are dynamic
 - Conditions for some parameters (pH or salinity) considered inhospitable for a species but still produce invasive results (i.e., *Piaractus*)
- Will be challenging to quantify
 - Should not unequivocally state whether species can/will invade but rather predict likeliest species to invade and likeliest habitat to be invaded

Future Goal – Invasive Potential Scorecard

- Differs from risk assessment...
 - Not seeking to assess quantitative or qualitative risk related to a threat
 - Not assessing impacts to ecological, social, or economic systems
 - Pathway specific aquarium fishes only
- Instead, potential of invasion based on...
 - Availability potential
 - Release potential
 - Survival /reproduction potential

1.	AVAILABILITY POTENTIAL This are of questions a stand which distribution Potential social research conducted for this project and deals and the enters to which faith we widely available. Previous work has just looked at LEMS date or visits to fait zones.		
	A. Does the species have a close association with humans? a) No b) Yes		
	Azioetztien web kanara is a good predetor of treasise potential and is the most connor characteristic of revarior apoetas (Restards and Ramazam 1994; Raustuk 2001, Daggar et al. 2006; Mayle and Marchest 2006; Garcia-Benhou 2007; Anachie and Strape 2009)		
	B. In the species sold in large superstrans? Based on research conducted for this project and (Daggan et al. (200), B) No D) Yes		
	C Is the species frequently land locally? Based on research conducted for this project and (Deggan et al. 2006). 40 70 b) Yes		
	D. Does the species show up consistently on "cruipplist"? Scient on research conducted for this project and (Deggen et al. 2006). 4) No. 5) Yes		
2.	RELEASE POTENTIAL		
	This set of questions is based on the Selense Potential social research conducted for this projec and pertains to how likely aspecter is to be released		
	A. Is the species sold in large superstores? a) No b) Tes		
	This question is repeated in this section because large superstore patrons are more like so release their ethers. Based on research conducted for this project and/Duggen et al 2000).		

Participatory Research

- Exploratory stakeholder workshop in August 2007
- Conducted workshop in April 2011
 - Aquarists
 - Public educators
 - Resource managers
 - Aquarium industry
- Reviewed project methodology
- Construct framework for ongoing collaboration
- Identified and evaluated potential strategies to discourage release

Outreach Oriented Management Strategies

Long term

- Work with big box stores on species lists (perhaps through a large NGO with a track record of working with large corporations)
- Large ad campaign on the order of Don't Mess With Texas

Short term

Ad campaigns and materials that target the knowledge and values of releasers

PROTECT TEXAS WATERS

Local aquarium society fish auctions and internet auctions provide alternatives to release.

Responsible Aquarists Don't Release.

Good Reasons Why We Shouldn't Release Our Aquarium Fish Into Texas Waterways

- Release of a single fish can turn into hundreds
- Non-native fish:
 - compete with native fish for food and habitat
 - can transmit diseases or parasites
 - prey on native fish
 - can alter natural habitat and make it unsuitable for native fish
- Some fish can't survive in the areas where they are released and suffer due to starvation or exposure

Plecos (*Hypostomus sp., Pterygoplichthys sp.*) compete with native fish for food resources and degrade habitats by burrowing into stream banks and compromising their stability.

What Are the Alternatives to Release?

- Sell or give away on Craig's list
- Sell or give away at local aquarium society fish auctions or on internet auction sites
- Sell, give or trade on aquarist web forums
- 👂 If you don't know it, don't own it
 - Is the fish aggressive?
 - Is it a "tankbuster"?
 - Does it have special tank requirements?
 - What are its breeding characteristics?

Although lionfish (*Pterois volitans*) make beautiful pets, these fish are not native to Texas and pose a threat to reef communities because they prey on native reef fish. Lionfish can also be a nuisance to divers and fishermen because of their venomous spines.

Acknowledgements

- Houston workshop attendees:
 - David Amelung
 - Tim Bell
 - Michael Concannon
 - Luci Cook-Hildreth
 - Prosper DeBee
 - Shannon DeBee
 - Jorge Gill
 - Leslie Hartman
 - Ken Kurzawski
 - Lindsey Lippert
 - Toyin Ojo
 - Lance Robinson
 - Dave Schumacher
 - Virginia Speck
 - Mark Walker
 - Gregg Whitaker

- Aquarium industry project advisors:
 - Prosper and Shannon DeBee of Aquazoo
- Provided links to the web survey:
 - Houston FishBox
 - Houston Zoo

