

U.S. Fish & Wildlife Service

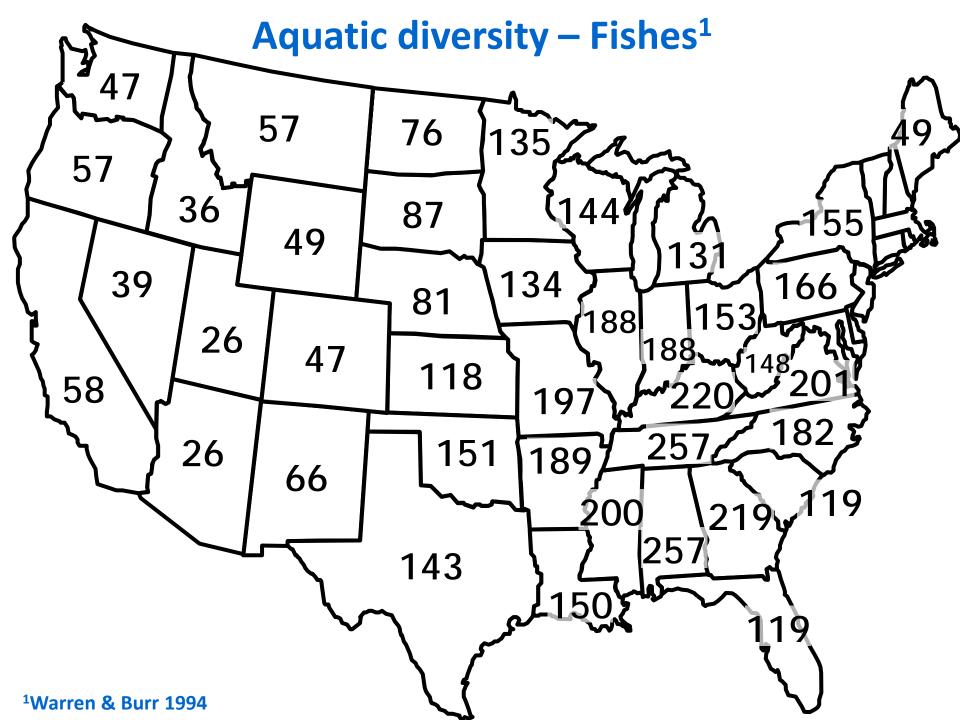
Fish Technology Center

eDNA: a tool for inventory and monitoring of aquatic invasive species

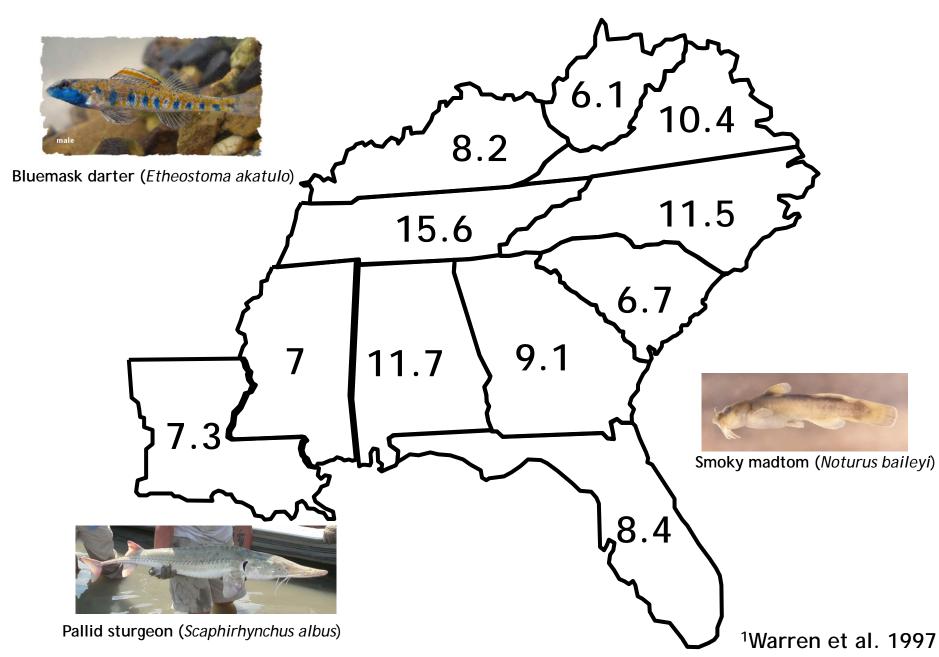
Gregory R. Moyer United States Fish and Wildlife Service Conservation Genetics Lab 5151 Spring Street Warm Springs, GA 31830

Acknowledgements

- Dr. Edgardo Diaz-Ferguson –post doc
- J. Herod & USFWS R4 NWR System funding
- T. Sinclair, D. Chappell, A. Brown, A. Jackson, K. Gestring, J. Galvez sampling
- B. Hickson and A. Williams lab support
- Permits
 - Federal Fish and Wildlife permit number MA57272A-0,
 - NWR System Research and Monitoring Special Use Permit number S7-WBH-12-19
 - Florida Fish and Wildlife Conservation Commission Conditional/Prohibited/Nonnative Species Permit number EXOT-12-67

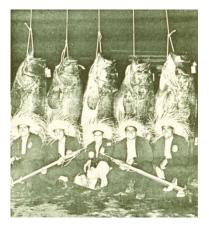

Problem

 Biologists estimate 10– 200 million species exist on Earth


 Humans are rapidly pushing many species toward extinction

 There is a need to protect biodiversity

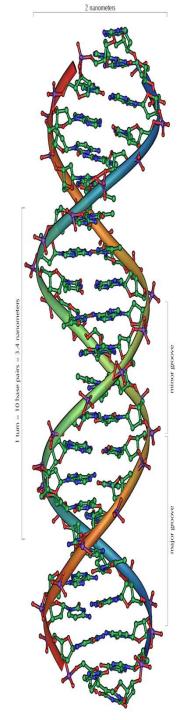
Percent of imperilment – fishes¹



Demography and extinction

- Deterministic factors
 - Habitat loss
 - SE has highest # impoundments km⁻²
 - Over-exploitation
 - Invasive species

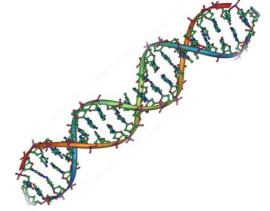
Tellico Dam


Asian swap eel (Monopterus albus)

The problem of invasive species

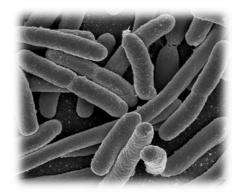
- Reduce genetic diversity
 - Decrease population size of native taxa
 Ecosystem
- Reduce species diversi
 - Species extinction
 - Homogenize biota
- Reduce ecosyster
 - Change Repart
- Reduce ecolected economic value of ecosystems

-Todays talk-


- What is environmental (e) DNA
- How can it be used for inventory and monitoring
 - early detection and rapid response of AIS
- Methodological details
- Associated costs
- Problems and concerns
- Ongoing research

Environmental DNA

Definition


 Detection of target taxon's genetic material (cellular or extracellular) from its environment without seeing/capturing the taxon.

Environmental DNA

- History of eDNA
 - 1987 Bacterial detection from sediments

- **2005** Eukaryote
 detection of fecal
 contamination in rivers
- 2008 AIS monitoring
- 2010 AIS monitoring in US rivers

eDNA applications

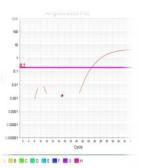
- Early detection, surveillance and determine routes of invasion of AIS into natural systems
- Identification and monitoring of endangered species and declined populations
- Assess ecosystem health
- Biodiversity assessment and inventory.
- Environmental impact and risk assessment.
- Trophic interactions
- Change in species distribution- climate change & niche stability

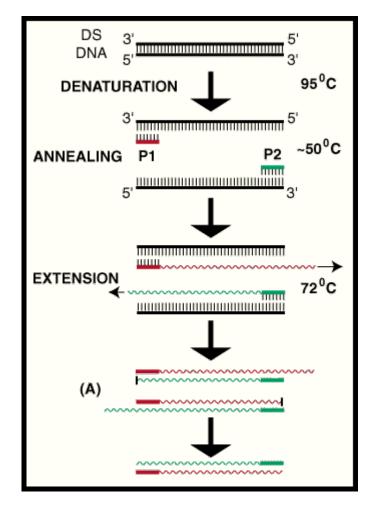
Early detection of AIS

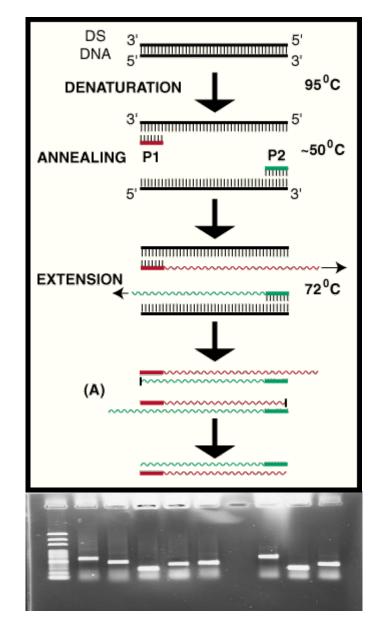
• How does eDNA work?

Early detection of AIS

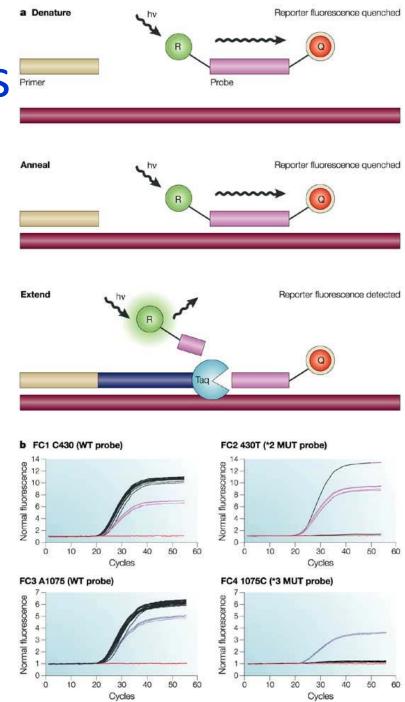
• How does eDNA work?







- PCR Primer design
 - Short 20bp sections of DNA
 - Only attach to target sequence!
 - Rely on available sequence data or generate new data
 - Takes time to develop and test for cross species amplification


- PCR Primer design
 - Short 20bp sections of DNA
 - Only attach to target sequence!
 - Rely on available sequence data or generate new data
 - Takes time to develop and test for cross species amplification

• Problems with detection via agarose?

		Rep	licate (PCR)	Repl	icate (c	PCR)	Repli	cate (seq.	conf.)
Day	No. fish/treatment	I	П	Ш	I.	П	Ш	I	П	Ш
3	0	-	-	-	-	-	-	-	-	-
	1	-	+	-	-	-	-	-	-	-
	3	+	+	-	+	+	+	+	+	+
	6	+	+	-	+	+	+	+	+	+
5	0	-	-	-	-	-	-	-	-	-
	1	-	+	-	-	-	-	-	-	-
	3	+	+	-	+	+	+	+	+	+
	6	+	+	+	+	+	+	+	+	+
7	0	-	-	-	-	-	_	-	-	-
	1	-	-	-	-	-	-	-	-	-
	3	+	+	-	+	+	+	+	+	+
	6	+	+	+	+	+	+	+	+	+

- qPCR primer design
 - Short 20bp sections of DNA
 - Only attach to target sequence!
 - Also has a specific probe
 - Detection of specific amplicon as it accumulates during PCR cycles
 - Takes time to develop and test for cross species amplification

Application of eDNA for AIS monitoring

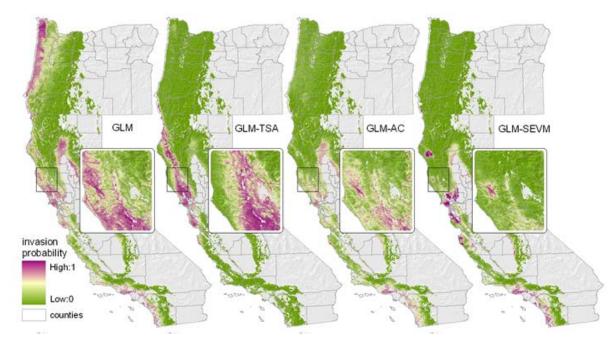
- Strategy
 - Develop suite of primer/probes for regional AIS needs (10-20)

- can run 3-4 primer/probes in one cocktail
- Collect a water sample
 - perhaps train volunteers to cut costs
- Test DNA of sample for eDNA of target taxa

Cost- Depends on methods used and various factory discounts/overhead etc . . .

Category	catalog #	Item	Vendor price	Price/sample
Taqman a	ssays			
	N8010560	MicroAmp 96 well reaction plates	\$62.75	\$0.07
	4306311	MicroAmp clear adhesive film	\$115.00	\$0.01
	450056	Primers (qPCR)	\$105.00	\$0.18
	450025	Taqman Tamra probe	\$255.00	\$0.40
	N8080228	TaqMan PCR Core Reagents	\$498.00	\$2.49
	GPL200F	tips	\$91.85	\$1.20
			Total	\$4.35
DNA extra	stion		TOLA	Ş4. 35
DIVA extra	14810-50-NF	Rapid Water DNA Isolation Kit-NF	\$704.00	\$7.04
	14810-30-NF	Water Filters (100 * 45micron)	\$688.00	\$6.88
	GPL200F		\$91.85	\$0.91
		tips Nalasana hattlas		
	16120-962	Nalgene bottles	\$147.00	\$6.13
			Total	\$20.96
PCR				
	PAM8298	Flexi taq DNA polymerase	\$1,136.80	\$0.23
	N8080007	GeneAmp dNTPs	\$57.00	\$0.43
	N8010560	MicroAmp 96 well reaction plates	\$62.75	\$0.07
	4306311	MicroAmp clear adhesive film	\$115.00	\$0.01
	450056	Primers	\$105.00	\$0.11
	GPL200F	tips	\$91.85	\$0.72
			Total	\$1.56
qPCR calib	oration			
	4362201	7500 Fast Real-Time PCR Systems Spectral Calibration Kit II	\$396.00	
	4360788	7500 Fast Real-Time PCR Systems Spectral Calibration Kit I	\$876.00	
	4351979	TaqMan [®] RNase P Fast 96-Well Instrument Verification Plate	\$566.00	
			Total	\$1,838.00

Problems and concerns


- Lab
 - Primer and probe design
 - Trace amounts of DNA
 - Corps QAPP is a good first step
 - Confirmation of positive qPCR identifications via sequencing
- Field
 - Lentic vs. lotic systems
 - How much water?
 - Where to take sample?

Problems and concerns

- Potential court issues
 - Daubert challenge
 - Are the findings based on sound science?
 - Published methods
 - Published databases
 - Subject to peer-review
 - Evidence handling and SOPs
 - USFWS Forensics Lab (<u>http://www.lab.fws.gov/</u>)

Moving forward

• AIS goal?

- Early detection and rapid response
 - Predictive modeling using GIS
 - Incorporation of urban growth and climate change forecasts
 - eDNA sampling
 - Still some major hurdles
 - Establishment of eDNA community of practice
 - Legal issues

Ongoing research

- National Wildlife Refuge System inventory and monitoring
 - Loxahatchee
 - Bullseye snakehead
 - African jewelfish
 - Savannah
 - Lionfish
 - Mayan cichlid
 - Asian swamp eel
- eDNA detection in a controlled lentic system

Development of eDNA tools for Loxahatchee NWR

Loxahatchee Objectives

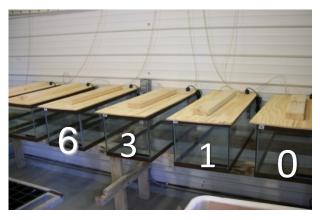
- Develop primer and probes for bullseyes snakehead and African jewel fish
- Establish water preservation method
- Estimate theoretical detection threshold level for qPCR using known controls of DNA
- Estimate detection probabilities for each eDNA method using density trials
- Assess influence of abiotic factors and time on eDNA persistence

Loxahatchee Methods

- Phase 1
 - Gene selection and primer design from tissue samples of *C. marulius & H. letourneuxi*
 - PCR / sequencing target gene (mtDNA COI).
 - qPCR primer and probe design
 - Optimization of qPCR reactions from tissue samples.
 - Optimization of DNA extraction and preservation from water samples.

Loxahatchee Methods

- Phase 2
 - Aquaria trials: proof-of-concept
 - Evaluation of eDNA persistence and abiotic factors and
- Phase 3
 - Field trials


- Water preservation experiment
 - -1L samples collected from pond (n = 12)
 - Samples 'spiked' with lyophilized tissue of target taxon
 - 6 samples treated with
 - 3M sodium acetate (1mL)
 - 95% non denatured ethanol (33mL)
 - 6 remaining samples went untreated
 - Samples held at 4 or 25C for 9 and 18 days
 - PCR testing for presence of target DNA

• Results

Treatment	Time (Days)	Temp (°C)	PCR conf.
NaOAc + EtOH - distilled water control	9	25	+
NaOAc + EtOH - pond water	9	4	+
NaOAc + EtOH - pond water	18	25	+
NaOAc + EtOH - pond water	18	4	+
No preservative - distilled water control	9	25	+
No preservative - pond water	9	4	-
No preservative - pond water	18	25	-
No preservative - pond water	18	4	-

- Aquaria trials triplicate
 - Densities = 0, 1, 3, 6 fish
 - 5.5, 15.8, 30.71g jewelfish
 - 44.5, 97.9, 197.9g snakehead
 - Water sample (1L) taken on days 3, 5, 7
 - detection via PCR and qPCR, sequence confirmation
 - Test factors influencing eDNA detection and persistence (GLR or ANOVA)

• Results – African jewelfish

- Both methods failed to detect eDNA at lowest density
- No sig. diff (P = 0.38) b/w time and detection
- Sig. and positive diff. (P > 0.01) b/w density and detection
- Detection probabilities
 - PCR = 0.32, 0.54, and 0.82 (1, 3, 6 density treatments)
 - qPCR = 0.00, 1.00, 1.00

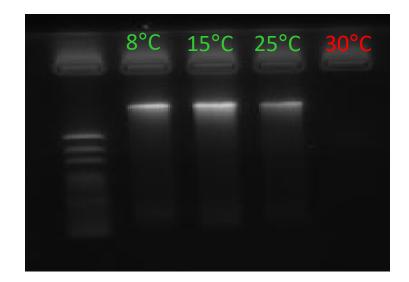
Results – Bullseye snakehead

- Both methods detected eDNA at lowest density
- No sig. diff (P < 0.18) b/w time and detection
- Sig. and positive diff. (P > 0.03) b/w density and detection
- Detection probabilities
 - PCR = 0.42, 0.53, and 0.63 (1, 3, 6 density treatments)
 - qPCR = 0.46, 0.59, and 0.76**

eDNA persistence: the influence of abiotic factors

- Completion of tank trials (African jewelfish)
 - Removed all fish
 - removed 1L of water
 - 7, 14, 24, 31 days (for densities 3 and 6)
 - Measured [DNA] and ODs
 - Removal of 500ml from one tank (density = 3; n=12)
 - Four temps (8°C, 15°C, 25°C and 33°C)
 - On days 0, 4 and 8 measured water quality parameters
 - pH, ammonia nitrogen, nitrate, nitrogen, alkalinity, carbon dioxide, chlorine, hardness, and dissolved oxygen
 - Measured [DNA] and ODs

eDNA persistence:


the influence of abiotic factors

- Results
 - Post removal of fish
 - eDNA persisted for up to 24 days post removal
 Temp ~ 23C
 - 24-31 day saw [DNA] and OD readings decrease
 - Negative and significant relationship b/w
 - [DNA] and time (*P* = 0.002)
 - OD and time (P = 0.006)
 - Abiotic factors
 - Temperature was only significant (P = 0.03) factor influencing DNA persistence

eDNA persistence:

the influence of abiotic factors

Factor	F Value	Pr(F)		
time	97.8153	0.064151		
temp	452.4894	0.029906		
ph	77.9409	0.071804		
ammonia	19.464	0.141902		
alkalinity	52.1592	0.087592		
CO2	3.418	0.315652		
Chlorine	2.69	0.348568		
Hardness	43.8338	0.095434		
02	52.5775	0.087247		
OD	19.0961	0.143217		
Residuals	4.881	4.881		

- Field trials: African jewelfish
 - 3 x 3 grid across water column
 - Sampled
 - Loxahatchee NWR (n = 9)
 - Adjacent Hillsboro canal (n = 9)

- Filter, DNA extraction, qPCR, sequencing
- Results
 - eDNA detected from one sample (Surface_Hillsboro)
 - Sequencing confirmed it was African jewelfish DNA
 - 99% similar to sequences found on Genbank

Loxahatchee discussion

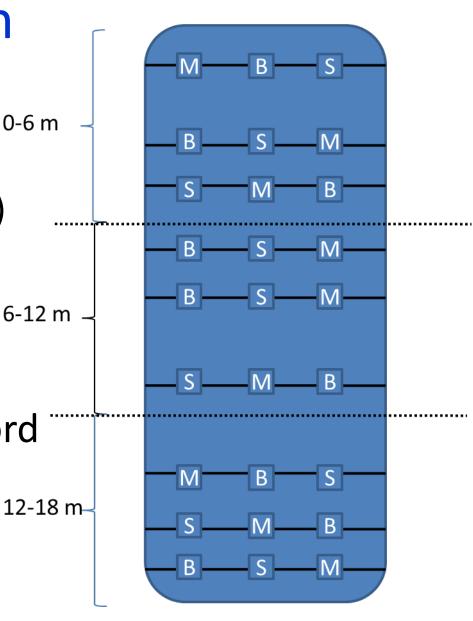
- Question raised
 - Able to take <u>one</u> water sample and detect eDNA from African jewelfish at a density of 3 fish/22L water
 - A 18m x 7.5m x 1.4m pond = 25,773 fish!
 - How many water samples will it take to detect at lower densities?

University of Florida School of Forest Resources & Conservation Program in Fisheries and Aquatic Sciences

Tropical Aquaculture Laboratory

eDNA detection probabilities

lentic systems - ongoing research



Objectives

- Estimate the probability of detecting *H. letourneuxi* in a field setting
- Estimate the influence of pond- (fish density, pond area) and sample-specific temperature) factors on the detection of eDNA.
- Evaluate whether the probability of detection varies substantially through time at a given location.
- Use modeling results to determine the most effective and efficient sampling strategy for predicting the occurrence of *H. letourneuxi* in lentic systems.

Experimental design

- Four ponds
 - 18m x 7.5m x 1.4m
 - negative control (0 fish)
 - density I (25 fish)
 - density II (330 fish) ⁶
 - density III (990 fish)
- HOBO loggers will record temp at each depth
- Conduct sampling on days 1, 5, and 10

Anticipated results

 Determination of sample effort (# water samples) required to be reasonably certain (e.g., 90%) that the species is detected given different densities.

