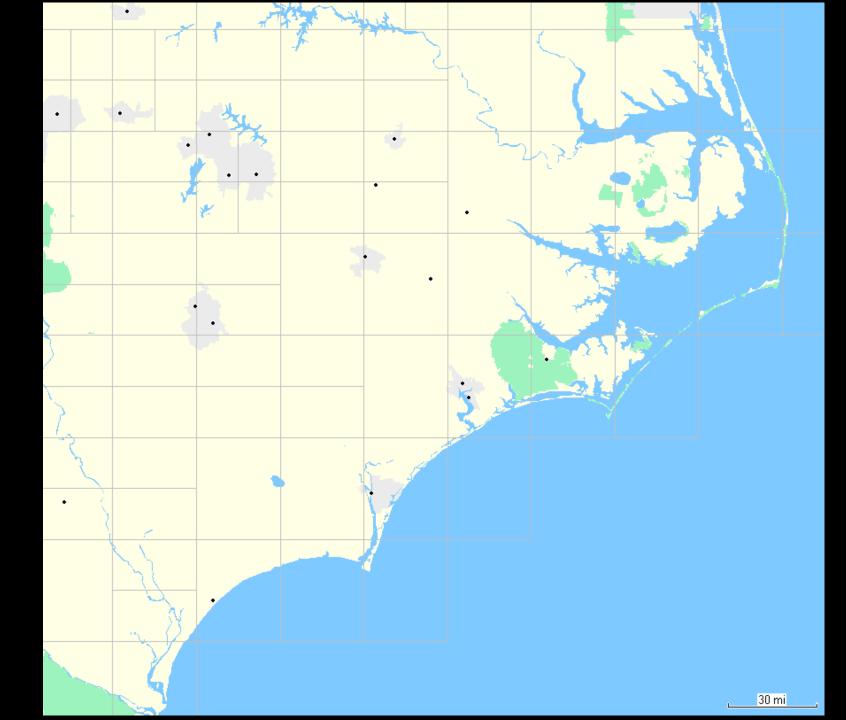
NC STATE UNIVERSITY Aquatic Plant Management

An Overview of Hydrilla in Lake Waccamaw

Rob Richardson Crop Science Dept.



Hydrilla

- Called the "perfect aquatic weed"
- #1 aquatic weed in U.S.
- Leaves in whorls of 3-10+
- Serrated leaf margins
- Tubers can remain in sediment for over 7 years
- Very shade tolerant
- Low CO₂ compensation

undrilla

Volume of Plant **Biomass** Across the Lake (SONAR identified)

 Total Biomass

 Plant Biovolume

 0-10%

 10-20%

 20-30%

 30-40%

 40-50%

 50-60%

 60-70%

 70-80%

 80-90%

 90-100%

Total Submersed Vegetation Biovolume

362 Total Survey Points (non-**SONAR**)

Point Intercept Survey Points

279 of 362 points had native plant species

Points of Submersed Native Vegetation

Points of Hydrilla

45 of 362 Points had Hydrilla

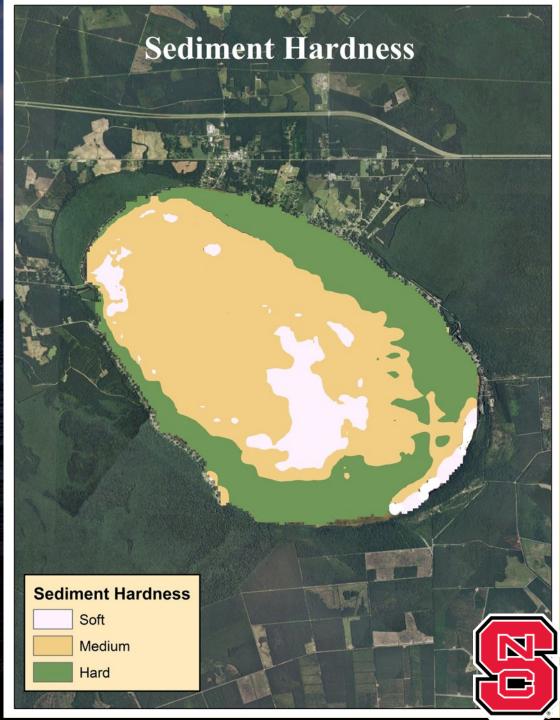
20 of 45 points had 5% or greater hydrilla coverage on rake

% of Survey Sample Consisting of Hydrilla

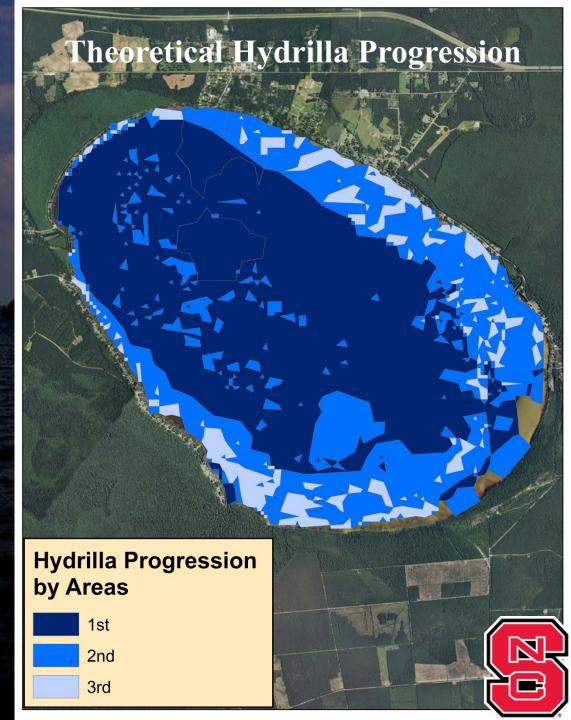
Based on Hydrilla presence, % on rake, and biovolume, estimated 608 acres infested

Hydrilla Infestation

3633 A of submersed native vegetation


Species recovered:

- Southern naiad*
- Slender pondweed*
- Nitella*
- Maidencane*
- Narrowleaf spatterdock*
- Floating heart (native aquatica)
- Native primrose
- Slender naiad
- Cabomba


*represent >98% of native vegetation

Submersed Native Vegetation

SONAR derived model of sediment hardness

Areas most likely to develop hydrilla 1st - 4736 A 2nd - 2622 A 3rd - 770 A

Estimate of Spread if Not Managed

2013 -1474 A

Possible Hydrilla Coverage 2013

2014 -2932 A

Possible Hydrilla Coverage 2014

N

2015 -4596 A

Possible Hydrilla Coverage 2015

 \mathbf{N}

2016 -5700 A

Possible Hydrilla Coverage 2016

N

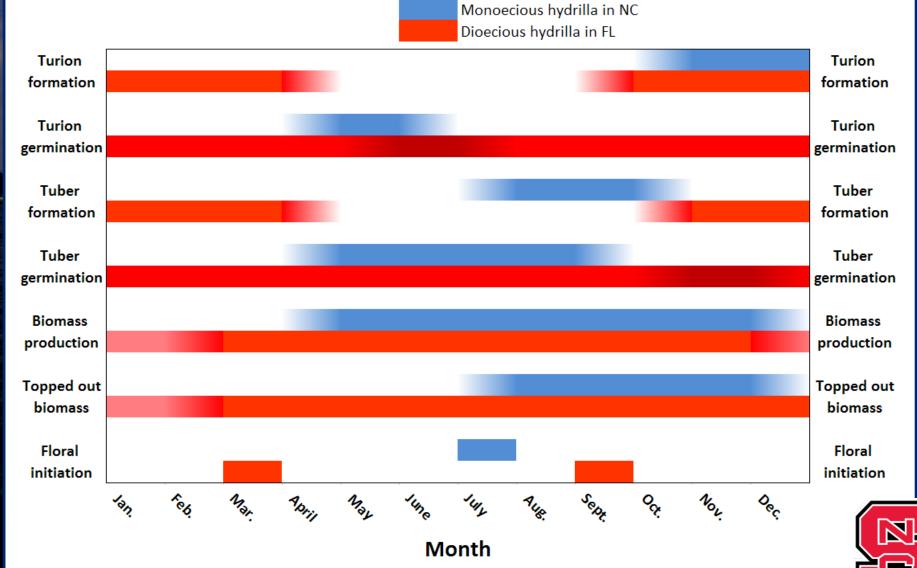
2017 -6223 A

Possible Hydrilla Coverage 2017

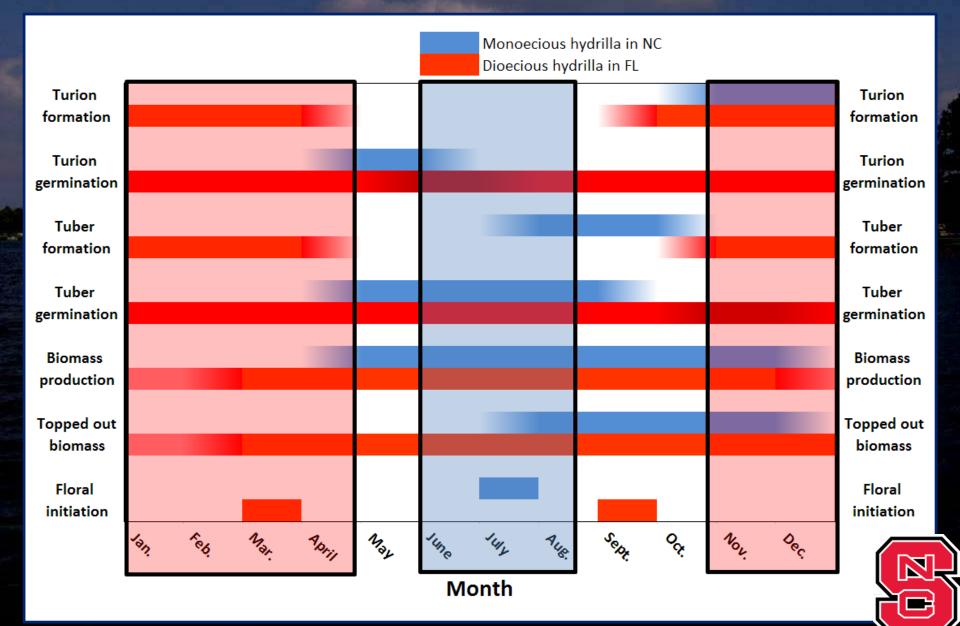
Z

Worst Case

Hydrilla at Wakulla Springs, Florida *Hydrilla verticillata* Photo by Vic Ramey Copyright 1998 Univ. Florida



An Overview of Hydrilla Management Options


How Do We Make Weed **Management Decisions?** • Use of the body of water -Irrigation, consumption, livestock, etc. • Plant identification • Fish and wildlife populations • Water quality • Physical, environmental, and economic limitations

Hydrilla Biotype Phenology

Modified from Harlan et al. (1985. J. Aquat. Plant Manage. 23:68-71) and the brain of Mike Netherland.

Timeframe for Management

Control Options

- Prevention
- Cultural
- Mechanical/Physical
- Biological
- Chemical

Prevention

ARIZONA AQUATIC GARDENS										
Home	Announ	cements	Ordering Info		Shipping Info	FAQ's		Contact Us		-
									January 2	2, 2007
AQUARIUM										
Plants										
Habitat Packages	;	1	remove	Anacharia			1	\$2.49	\$2.49	
Fish	sh			ove Anacharis-XLG FORM ove Egaria najas			1	\$1.98	\$1.98	<u> </u>
The Algae Squad		3					1	\$1.58	\$1.58	
The Shrimp Facto	ory	4					6	\$1.98	\$11.88	_
Snails		5	remove Parrot's Feather			2	\$0.98	\$1.96		
Picotopes Driftwood		6		e Brazilian Pennwort			1	\$1.98	\$1.98	
Tools			remove Rotala, Indica			2	\$0.98	\$1.96		
CO2 Systems		7	remove Temple Plant					\$1.98		
Lights		9	remove Water Velvet or Salvinia			1	\$1.98			
Additives/Supple	ments					1	\$6.99	\$6.99	=	
Fertilizers	incitts	10	remove Floating Heart			3	\$2.98	\$8.94		
Substrates/Heate	er	11		remove Snowflake, Large White (loose)			3	\$6.99	\$20.97	
Filters & Pumps		12	remove Water Hyacinth			1	\$0.00	\$0.00		
Test Kits		13	remove Water Lettuce			1	\$1.98	\$1.98		
Food		14		move Water Poppy			3	\$2.99	\$8.97	
Medications		15		remove Aquatic Morning Glory			3	\$4.59	\$13.77	
POND		16		emove Golden Mystery Snail			1	\$1.99	\$1.99	
Plants		17		ove Apple Snail			1	\$3.99	\$3.99	
Lilies & Lotus			emove Giant Striped Colombian Ramshorn Snail			1	\$1.79	\$1.79		
Koi & Other Pond	Fish	19	remove	Mosaic Pl	ant		1	\$4.99	\$4.99	
a 1								Subtotals	¢100.19	

Hand Removal

 Most common management form • Highly labor intensive/inefficient - Aquatic plants may be up to 98% water - Volunteers are cost effective • Plants may reproduce as fast as removed • Plant identification is critical • Generally for special situations: - Active water intakes - Active irrigation intakes

Cultural/Physical Mgt.

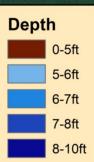
- Modify the environment to create less favorable conditions
- Environmental impacts vary by the technique used
- Fertilization
- Liming
- Pond dyes

Benthic barriers
Water level manipulation

Water Drawdown

- Advantages
 - Effective on many species
 - Very inexpensive (~\$0/acre?)
 - Moderate-term
 - Stimulates germination or sprouting of native plant species
 - May be used to complement other tools

- Disadvantages
 - Not very selective
 - Impacts on other organisms (?)
 - Impacts on human uses
 - Need water control structure
 - Heavy snow cover may impede success



Lake Level After 5ft Drawdown

Effect of a 5 ft Drawdown 6,300 A of water left



Source: Earl, I-cubed, USDA, USGS, AEX, GeoEye, IGN, IGP, and the GIS User Community

Lake Level After 5ft Drawdown

Most hydrilla in water > 5ft depth

Source: Est, Jouleel, USOA, USOS, AEX, GeoEye, (IGN, IGP, and the GIS User Community

Mechanical Techniques

- Short-term control only
- May actually spread problems
- Expensive
- May destroy "fishing structure"
- Chains/cutters
- Backhoe
- Diver suction

Weed harvesters

- Cutter boats
- Dredges

Let's Clip the Sprouts and...

Watch Them Sprout...

Shoot Removed From Tuber

曲

...

Cutting / Harvesting

Advantages
Direct relief
Immediate efficacy
Moderately expensive (~\$400/acre)

- Disadvantages
 - Not selective
 - Short-term control (2-3 harvests per season)
 - May aid spread of some species like hydrilla
 - Slow
 - Disposal

Diver-operated Suction Harvester

 Advantages
 Selective (dependent on operator and environment)
 Longer-term control Disadvantages
Very limited areas
Very slow
Moderately expensive (~\$1,000/acre)
Disposal

Rotovating

Advantages

Longer term than other mechanical (on Eurasian watermilfoil)
Moderately inexpensive

• Disadvantages

- High disturbance
- Turbidity
- Spreads fragments
- Limited environmental range by depth, sediment
- Free-floating plant material

Dredging

Advantages
Very effective
Very long term

• Disadvantages Very expensive (~\$6,000/acre) • Not selective Impacts on other organisms? Dredge spoils

Advantages of Classical Biological Control • Permanence (classical or inoculative approach) Low maintenance costs, not necessary to repeat every growing season No chemical residues • Minimal environmental damage • Desirable species usually unaffected (classical) • Usually perceived by the public as acceptable

Disadvantages of Classical Biological Control

- Effective control may require several growing seasons, even under the best circumstances.
- Initial costs are relatively high (when amortized over the long term, costs usually are low, compared with other methods of aquatic weed management).
- Biological control agents are susceptible to a wide variety of human and environmental interferences.

Grass Carp

• Relatively non-selective, not classical Main hydrilla control method in NC ponds - Cost-effective over lifetime (16+ years) - Other vegetation not wanted • Used extensively in Santee-Cooper **Reservoirs in SC** Not desired in many lakes due to feeding on native vegetation and resulting environmental impacts

Triploid Grass Carp Ctenophyrangodon idella

Table 4. — Apparent food preferences of grass carp in four Florida lakes over a 10-year period. Data from Van Dyke et al. (1984).

RANK	SPECIES		
Preferred			
1	Hydrilla verticillata		
2	Lemna sp.		
3	Filamentous algae		
4	Brasenia schreberi		
5	Ceratophyllum demersum		
6	Myriophyllum laxum		
7	Potamogeton illinoensis		
8	Utricularia sp.		
Intermediate			
9	Salvinia rotundifolia		
10	Typha sp.		
11	Sagittaria lancifolia		
12	Eichhornia crassipes		
13	Panicum hemitomon		
14	Pontederia cordata		
15	Eleocharis sp.		
16	Panicum repens		
Non-preferred			
17	Myriophyllum spicatum		
18	Alternanthera philoxeroides		
19	Vallisneria americana		
20	Nymphaea odorata		
21	Ludwigia octovalis		
22	Hydrocotyl sp.		
23	Cladium jamaicense		

 Table 1. Mean consumption of ten macrophytic plants by grass carp (Ctenopharyngodon idella)
 in tank conditions at duration of 196 hours.*

Species	Mean consumption (g)
Lemna minor	504 ^a
Chara sp	485 ^a
Najas guadalupensis	480^{a}
Hydrilla verticillata	473 ^a
Potamogeton pectinatus	155°
P. perfoliatus	146 ^b
P. crispus	135 ^b
Azolla filiculoides	128 ^{bc}
Ceratophyllum demersum	109 ^c
Myriophyllum spicatum	85 ^c

*Means with a common superscript were not significantly different at P<0.05 as determined by Tukey's Least Significant Difference test to separate means.

The variation of plant biomass and cover in the ponds are presented in Table 2. At the end of experiment, the total vegetation cover was significantly higher in the control pond (P<0.05). *P. crispus, Azolla filiculoides, Ceratophyllum demersum,* and *Myriphyllum spicatum* cover and weight in the trail ponds were no different from the control. These results suggested that grass carp with the average weight of 60 grams did not eat properly these species. The final biomass and cover of *Lemna minor, Chara* sp, *Najas guadalupensis* and *Hydrilla verticillata* showed a great difference between test and control ponds (P<0.05).

Sutton and VanDiver http://edis.ifas.ufl.edu/fa043

Table 1. A few common Florida aquatic plants eaten by grass carpin the approximate order of preference.

Order of			
preference	Common name	Scientific name	
1	Hydrilla	Hydrilla verticillata [L.f] Royle	
2	Musk-grass	Chara spp.	
3	Southern naiad Najas guadalupensis (Spreng,) Magnus		
4	Brazilian elodea Egeria densa Planch.		
5	Water-meal	Wolffia spp.	
6	Duckweeds	Lemna spp. and Spirodela spp.	
7	Azolla or water-fern	Azolla caroliniana Willd.	
8	Pondweeds	Potamogetan spp.	
9	Coontail	Ceratophyllum demersum L.	
10	Torpedograss	Panicum repens L.	
11	Cat-tail	Typha spp.	
12	Water-aloe	Stratiotes aloides L.	
13	Watercress	Nasturtium officinale R. Br.	
14	Eurasian watermilfoil	Myriophyllum spicatum L.	
15	Tapegrass or eel-grass	Vallisneria americana Michx.	
16	Parrott-feather	Myriophyllum aquaticum (Vell.) Verdc.	
17	Water hyacinth	Eichhornia crassipes (Mart.) Solms	
18	Water-lettuce	Pistia stratiotes L.	
19	Water-lillies	Nymphaea spp.	
20	Spatterdock	Nuphar luteum (L.) Sibth. & Sm.	

Effect of grass carp on plant coverage in four hydrilla infested and four Southern naiad infested lakes in Florida. (Derived from Hanlon et al. 2000)

	Stocking rate	Initial vegetation	Vegetation decline	Years
	carp/veg A	% coverage	% points	#
Hydrilla	10.5 ± 0.6	26.5 ± 6.6	3.5 ± 13.2	6.0 ± 0.4
Southen naiad	9.5 ± 0.7	76.5 ± 20.6	42.5 ± 26.8	3.5 ± 0.3

Grass Carp Summary

- Grass carp should be expected to feed on naiad species and hydrilla at approximately the same rate
- Lack of selectivity means that stocking densities would need to be based on total vegetated acres or biomass
- Expectation that grass carp would eliminate 99% of submersed vegetation

3633 A of submersed native vegetation

Species recovered:

- Southern naiad*
- Slender pondweed*
- Nitella*
- Maidencane*
- Narrowleaf spatterdock*
- Floating heart (native aquatica)
- Native primrose
- Slender naiad
- Cabomba

*represent >98% of native vegetation

Submersed Native Vegetation

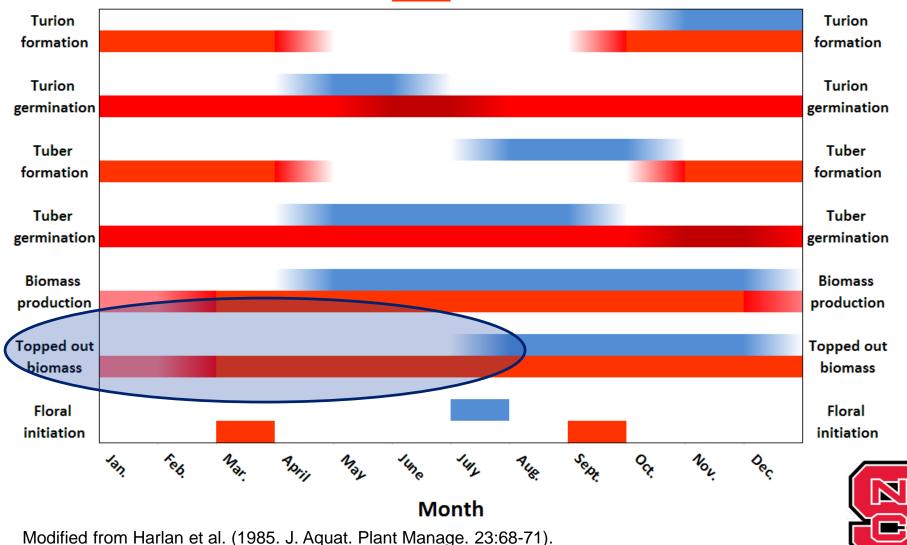
3633 A of submersed native vegetation

Species recovered:

- Southern naiad*
- Slender pondweed*
- Nitella*
- Maidencane*
- Narrowleaf spatterdock*
- Floating heart (native aquatica)
- Native primrose
- Slender naiad
- Cabomba

*represent >98% of native vegetation

Submersed Native Vegetation 5 years after grass carp


Biological - Insects

- No success to date in establishing insects for control of monoecious hydrilla
- Reasons:
 - No hydrilla biomass January April
 - Hydrilla only topped out July Dec.
 - Colder climate limits overwintering and reproduction
- Insects that require hydrilla biomass to overwinter should not be expected to control monoecious

Biotype Phenology

Monoecious hydrilla in NC Dioecious hydrilla in FL

2013 Herbicide treatment area of 959 A to control all known rooted infestations

Hydrilla Treatment Area

337 acres of overlapping hydrilla and native species

Overlapping Areas of Hydrilla and Natives

Submersed Native Vegetation in Treatment Area

416 acres of native plants in treatment area

Overview

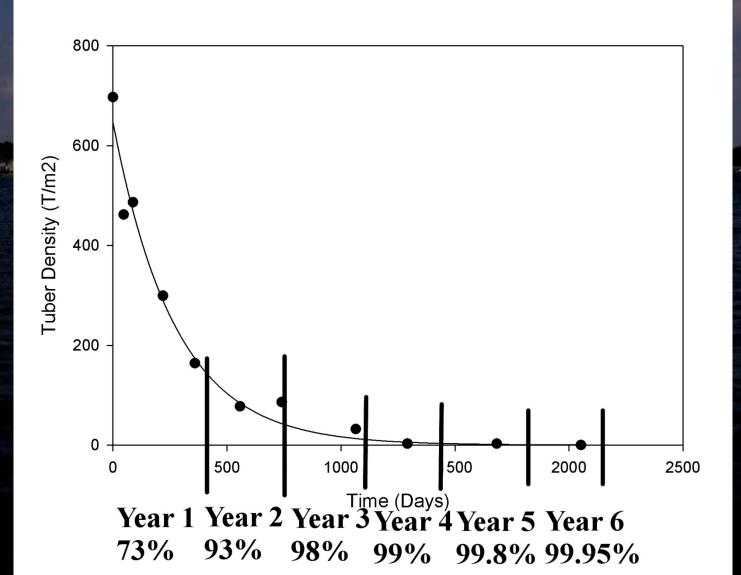
> Aquatic herbicides are applied to water > EPA considers this to be a "food use" > Major considerations: • Off-target movement (water flow-through) Irrigation • Drinking Fishing • Swimming/recreation

- Livestock use
- Fish kills

Chemical Options

- 2,4-D products
- Bispyribac
- Carfentrazone
- Copper products
- Diquat
- Endothall
- Flumioxazin

• Fluridone • Glyphosate • Imazamox • Imazapyr Penoxsulam • Peroxide products • Triclopyr


Sonar (Fluridone)

- Historically, most used herbicide for hydrilla management
- Slow acting systemic herbicide that can kill whole plants
- Only ~5ppb required for hydrilla control
- Some plant selectivity at hydrilla rates
- Inhibits phytoene desaturase enzyme in plants, essentially non-toxic to non-plants
- Yearly applications documented to deplete tuber bank
- Difficult to use in flowing water
- Resistance now developing in Florida

Monoecious Tuber Declines

Tar River Reservoir

Contact Herbicides

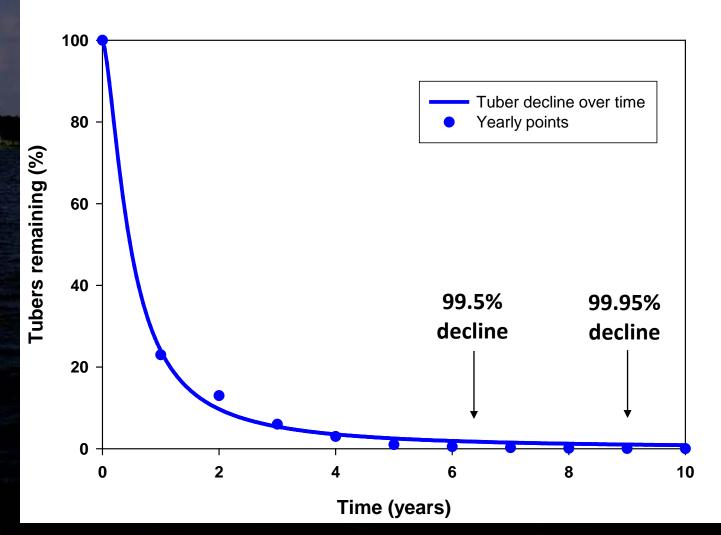
- Diquat (Reward), Endothall, Flumioxazin, and copper products
 Burn back foliage, no affect on roots; hydrilla requires multiple treatments per year
 Especially useful for small areas around boat landings and docks; can be used for large scale treatments
 - Copper may be toxic to mollusks so probably not an option for Waccamaw
 - Good compliment for other methods

Cayuga Lake, NY

- Natural, glacial lake with important native submersed plants
- Hydrilla found late summer 2011
- NY and Ithaca started an eradication program
- Marina and boating access closed promptly
- Contact herbicide treatment fall 2011
- Fluridone herbicide treatment 2012
- Frequent, intensive surveys to detect spread
- Program effective so far with minimal impact outside of treatment area

Cayuga Lake, NY

Questions?



Hypothetical Tuber Longevity

Hypothetical Tuber Decline

ZD