The next "killer" algae? Risk assessment and mitigation for aquarium strains of the marine macroalgal genus *Chaetomorpha*

> Linda Walters & Rachel Odom Department of Biology University of Central Florida

Invasive Species Associated with Aquarium Dumping

Pterois volitans

Caulerpa taxifolia

If not Caulerpa, then something else...

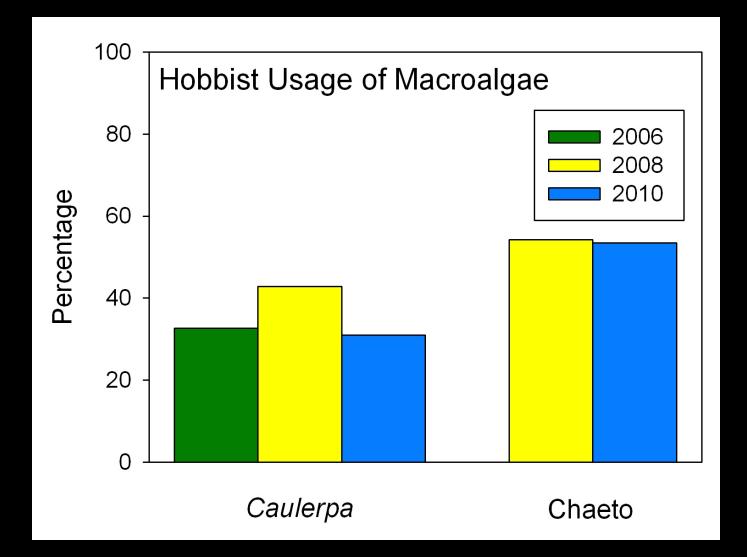
Aquarium Macroalgae

- Used as biological filter
- Desirable if:
 - High nutrient uptake rates
 - Hardy (wide tolerances)
 - Easy to obtain/share

Could replacement macroalgal species become invasive?

Aquarium Macroalgae

- Used as biological filter
- Desirable if:
 - High nutrient uptake rates
 - Hardy (wide tolerances)
 - Easy to obtain/share


Macroalgae: Invasability

Factors promoting invasion success

- Fast uptake/growth
- Hardy (wide tolerances)
- Vegetative reproduction

Hobbyist Usage of Macroalgae

Does Chaetomorpha fit the bill to be our next invasive aquarium species?

- We know very little about this alga beyond that it is "very hardy".
- Taxonomists

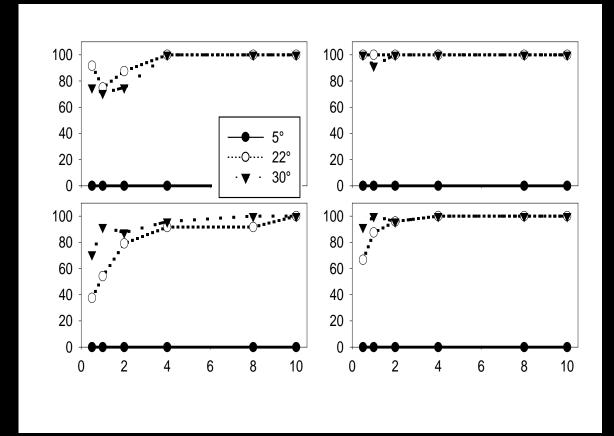
- ITIS Data Base: 11 species in genus
- AlgaeBase: 62 species in genus
- Lots of blooms, but never listed as invasive.
- Common names: Chaeto, brillo pad alga, spaghetti alga
- We should be proactive and be prepared!

MS Thesis: Rachel Odom

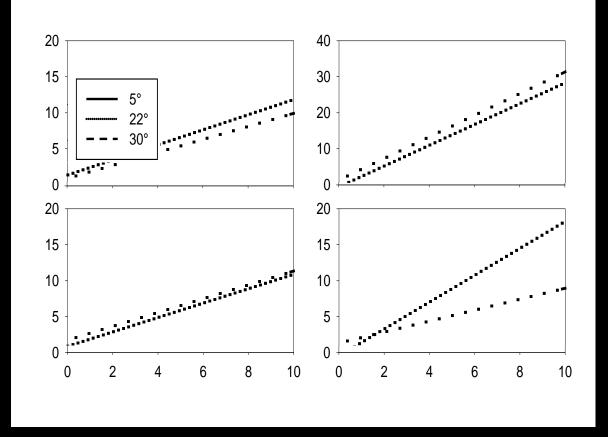
- (2014) Biological Invasions 16:2589-1597.
 A safe alternative to invasive Caulerpa taxifolia? Assessing aquarium-release invasion potential of aquarium strains of the macroalgal genus Chaetomorpha (Audience: Scientists)
- (2014) Invasive Plant Science and Management 7:76-83. Alternatives to release: efficient methods for disposal of excess or unwanted aquarium mancroalgae in the genus Chaetomorpha (Audience: Hobbyists)
- (In press) Journal of Aquatic Plant Management. Chemical eradication methods for aquarium strains of Chaetomorpha (Audience: Managers)

- What is the minimum viable fragment size?
- Are smaller fragments less likely to survive?
- Can fragments survive under different thermal conditions?
- How many viable fragments are generated by hobbyists?

Methods


- Purchased 10 aquarium strains of *Chaetomorpha* Counted, measured fragments generated in transport
- Cut fragments to lengths 0.5 10 mm (n = 25)
 - Exposed to 5, 22 and 30°C
- Monitored survival and growth over 2 weeks

- 3 species received
 - *C. linum* (4), *C. spiralis* (4) & *C. crassa* (2)
- No significant differences in fragment generation
 - Among species: P=0.704
 - Among purchase types (online, local): P=0.654
- No effect of distance shipped/transported: *P*=0.410



Results – Fragment Survival for Chaetomorpha linum

Initial size NS (P>0.05); Temp significant (P<0.001); Interaction NS (P>0.05)

Results – Growth of surviving fragments

Initial size significant (*P*<0.05); Temp NS (*P*>0.05); Interaction significant in 2 of 4

Fragment Generation

Purchase	Total no. fragments	Species	Predicted to survive at 5°	Predicted to survive at 22°	Predicted to survive at 30°
2	6266	C. spiralis	5% (288)	88% (5487)	58% (3643)
3	223	C. spiralis	0	97% (216)	98% (218)
4	28	C. spiralis	0	100% (28)	100% (28)
5	90	C. crassa	80% (72)	93% (84)	82% (74)
6	1208	C. crassa	0	100 (1208)	100% (1208)
7	672	C. linum	0	99% (667)	99% (663)
8	704	C. linum	0	100% (704)	100% (703)
9	1917	C. linum	0	98% (1880)	99% (1902)
10	857	C. linum	0	100% (857)	100% (857)

Answers to Research Questions

- What is the minimum viable fragment size? 0.5 mm
- Are smaller fragments less likely to survive? No
- Can fragments survive under different thermal conditions? Yes
- How many viable fragments are generated?
 Can be in the thousands per purchase

Hitchhikers with Chaetomorpha

Hitchhikers may also be introduced with *Chaetomorpha* purchases

Includes known invasives and their congeners

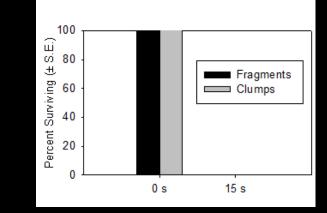

Determine minimum exposure times for safe disposal of *Chaetomorpha* by reported methods

- Boiling
- Microwave
- Freezing
- Desiccation
- Plumbing (freshwater, light deprivation)

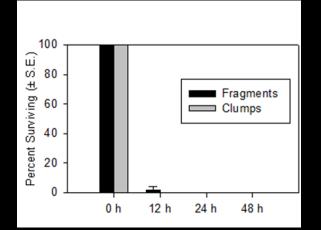
Does minimum duration increase with amount of algal tissue?

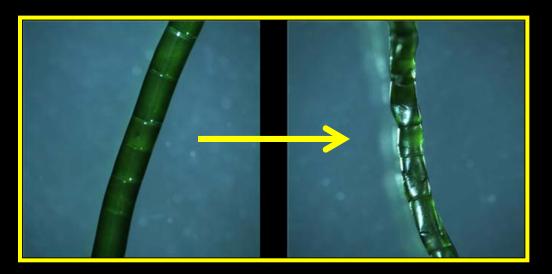
Methods

- 3 purchases
- Tested 5 techniques for fragments and for clumps
 - Boiling, microwave, freezing, desiccation, freshwater

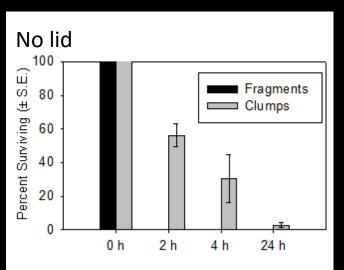

Methods

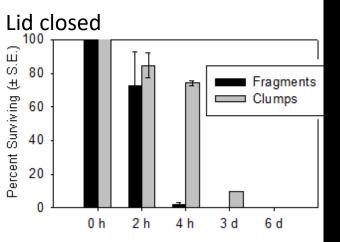
Disposal Technique	Tested Durations	
Boiling	0, 1, 5 min	
6		
Microwave	0, 15 sec	
Freezing	0, 12, 24, 48 hr	
Desiccation (no lid)	0, 2, 4, 24 hr	
Desiccation (closed lid)	0, 2, 4 hr, 3, 6 days	
Freshwater (no light)	0, 3, 6 days	


Boiling: 100% dead


100 (I) 80 (I) 8

Microwave: 100% dead

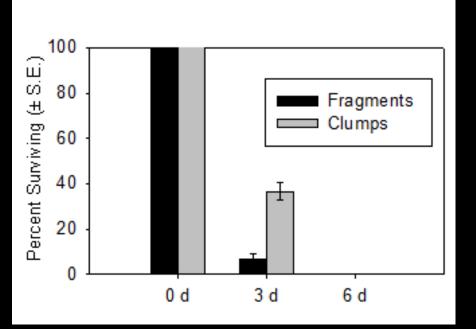



Freezing: 100% dead

Results – Desiccation

• No lid

Near 100% mortality at 24 hrs


Lid closed

- 100% mortality at 6 days

Clumps require more time for desiccation

Results – Freshwater (no light)

- 6 days exposure needed for 100% mortality
 - Clumps require longer than fragments

Disposal Recommendations

Disposal Technique	Durations	Disposal Applications
Boiling	1 min	Boiling purchase water containing algae or tank water after water change
Microwave	15 sec	Microwaving prior to disposal
Freezing	24 hr	Freezing in plastic bags prior to disposal
Desiccation (no lid)	24+ hr	Desiccation prior to disposal
Desiccation (closed lid)	6+ days	Disposal via garbage cans (destined for landfill)
Freshwater (no light)	6 days	Disposal via plumbed sinks or drains, NOT recommended via storm-water drains

Chemical Eradication Methods

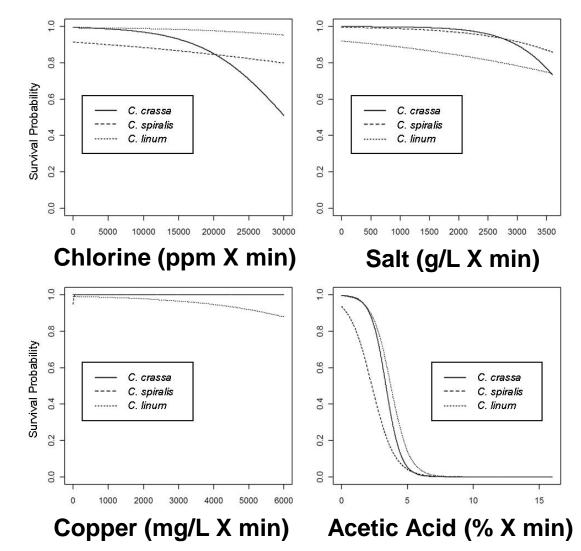
Importance

- Successful eradication of an invasion requires rapid response
 - Proactively determine effective chemical treatment
 - Eliminate research time-lag to limit stronghold, spread
- Limiting detriment to nontarget species

Minimize quantity of chemical used

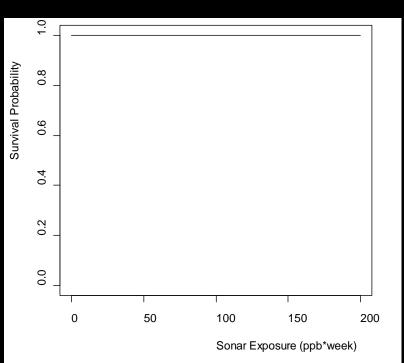
Assess effectiveness of chemical algicides for removal of potential invasions by *Chaetomorpha*

Chemical Eradication Methods

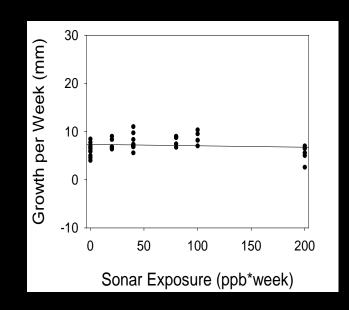

Methods

3 populations tested, n=5 (10 mm fragments)

Chemical	Tested Concentrations	Exposure Durations
Chlorine bleach	0, 50, 125, 250 ppm	0, 30, 60, 90, 120 min
Rock salt	0, 10, 20, 30 g/L	0, 30, 60, 90, 120 min
Copper sulfate	0, 10, 20, 50 mg/L	0, 30, 60, 90, 120 min
Acetic acid	0, 1, 2, 4%	0, 1, 2, 3, 4 min
Sonar (A.I. fluridone)	0, 10, 20, 50 ppb	0, 2, 4, 6, 8 wks


- Used chemicals and dosages effective with Caulerpa taxifolia
- Exposed to chemical, rinsed, resubmerged (4 wks)
 - Survival, growth

Survival

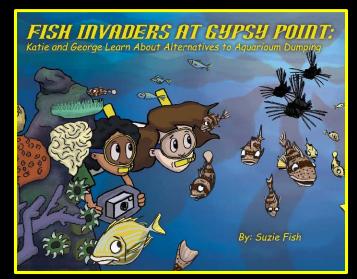


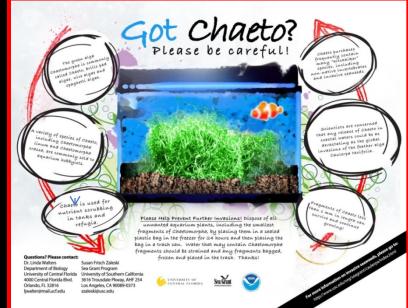
Chemical Eradication Methods

Results – Sonar

- 1 purchase tested, n=5 fragments
- 100% survival for all treatments
- Did not significantly limit growth Not effective as tested

Chemical Eradication Methods


Comparison to eradication considerations for Caulerpa taxifolia


Chemical	Caulerpa taxifolia	Chaetomorpha	
Chlorine bleach	125 ppm for 30-60 min	Not effective at tested concentrations	
	50 ppm for 90+ min	(up to 250 ppm for 120 min)	
Rock salt	24 g/L for 30 min	Not effective at tested concentrations	
	18 g/L for 60+ min	(up to 30 g/L for 120 min)	
Copper sulfate	20 mg/L for 30 min	Not effective at tested concentrations	
	5 mg/L for 60+ min	(up to 50 mg/L for 120 min)	
Acetic acid	1% for 60+ min	4% for 1 min	
		2% for 4 min	
Sonar	50 ppb for 12 days	Not effective at tested concentrations	
(fluridone)		(up to 50 ppb for 8 weeks)	

Chaetomorpha harder to eradicate than Caulerpa!

Risk Mitigation Summary

- Two-barrier approach
- Prepare for potential invasions
 - Rapid response enabled by prescreened chemicals for eradication and/or management of invasion
- Prevent aquarium-release introductions
 - Outreach to aquarists with science-based recommendations

Mytella charruana: St. Augustine, FL (8/14)

Diplosoma sp.

Distaplia bermudensis

allino.

Ascidians (Sea Squirts) in Mosquito Lagoon

Styela plicata

and the second second

Mogula occidentalis Botrylloides nigrum