Sensitivity of Freshwater Mollusks to Hydrilla-targeting Herbicides

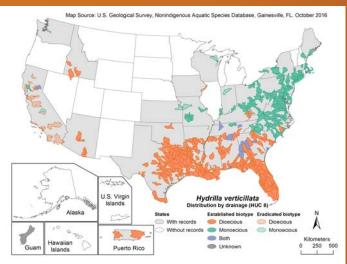
Jennifer M. Archambault and W. Gregory Cope NC State University Department of Applied Ecology

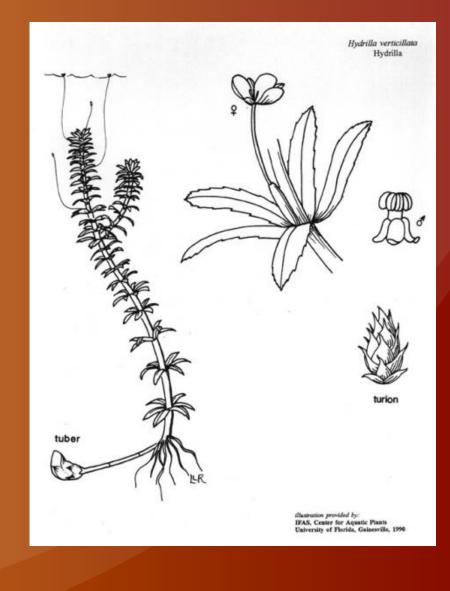
Acknowledgments

Mollusk Collection/Propagation Chris Barnhart, Missouri State U. Tom Fox Jay Levine Steve Hoyle Justin Nawrocki Cody Hale North Carolina State Parks

Analysis/Laboratory/Field Haywood Perry, SePRO Angela White SePRO USACE

Funding Gulf States Marine Fisheries Commission/US FWS Region 4


NC STATE UNIVERSITY



Hydrilla verticillata

- Hydrilla, water-thyme
- **Monoecious biotype**
 - Spreading by 1970s
 - Tubers, turions, fragments
- **Expanding in range**
 - Boats, angler equipment

Hydrilla verticillata

Federal Noxious Weed in US

- Monocultures
- Alters water quality
- Neurotoxic bacteria & AVM

Hydrilla verticillata

Federal Noxious Weed in US

- Monocultures
- Alters water quality
- Neurotoxic bacteria & AVM
- Control Strategies:
 - Mechanical removal
 - **Grass carp**
 - **Herbicides**
 - Sonar (fluridone)
 - Aquathol (endothall)

Herbicide Mode of Action

Sonar (fluridone)

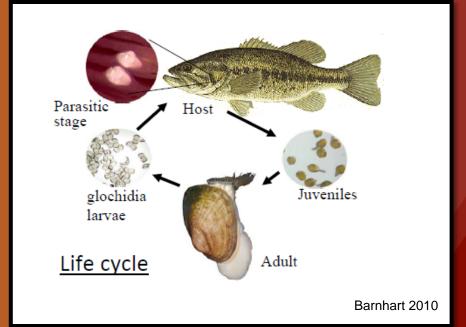
- Chlorophyll / carotenoid pigment inhibitor
 - Prohibits plants from making food

Aquathol (endothall)

Protein phosphatase inhibitor (interferes with respiration)

Freshwater Mollusks

- **Extremely imperiled taxa**
- **Poorly studied**
 - Knowledge far behind fishes, mammals, birds...
 - Still need basic science
- Sensitive to contaminants


FWGNA

MC Barnhart

Unionid Mussels

- Found in streams, rivers, lakes, and ponds
 - 673 species in Unionidae~ half in N. America
 - > 71% of species imperiled
- Water purifiers
- Unique life history obligate fish parasite

Gastropods (Snails)

- Found in streams, rivers, lakes, and ponds
 - 703 species in US and Canada
 - > 74% of species imperiled
- Highly susceptible to habitat loss and degradation

FWGNA

Lake Waccamaw

9,000 acre Carolina Bay lake
Several endemic species
3 fishes – W. silverside, W. killifish, W. darter
2 mussels – W. fatmucket and W. spike
2 snails – W. amnicola and W. siltsnail

Lake Waccamaw

9,000 acre Carolina Bay lake
Several endemic species
3 fishes – W. silverside, W. killifish, W. darter
2 mussels – W. fatmucket and W. spike
2 snails – W. amnicola and W. siltsnail

~ 600 acres infested

Eno River

Background Objectives Methods Results Implications Conclusions

NC Piedmont stream, rocky, cobble substrates

- Panhandle pebblesnail present
- Imperiled (NCWAP species; G2)
- Rocky riffles with good flow
- Solid substrate
- Plentiful riffleweed (snail habitat)
- Hydrilla present

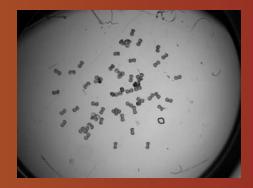
Research Needs & Objectives

Few data on invertebrates

No data for freshwater mollusks

Determine sensitivity of native mollusks to aquatic herbicide formulations

Sonar – Precision Release (PR) and Genesis (i.e., fluridone)

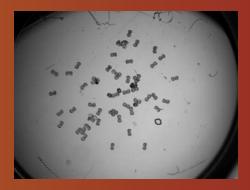

Aquathol – K (i.e., endothall)

Consider results in context of proposed treatment of Hydrilla

Acute Toxicity Experiments

Fatmucket (Lampsilis siliquoidea)

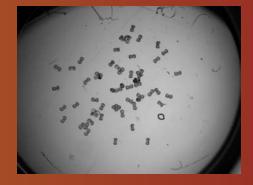
- glochidia and juveniles
- Panhandle Pebblesnail (Somatogyrus virginicus)
 - juveniles and adults

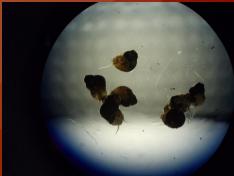




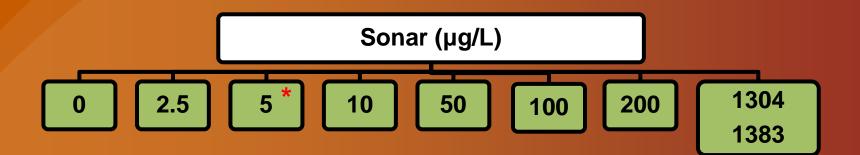
Acute Toxicity Experiments

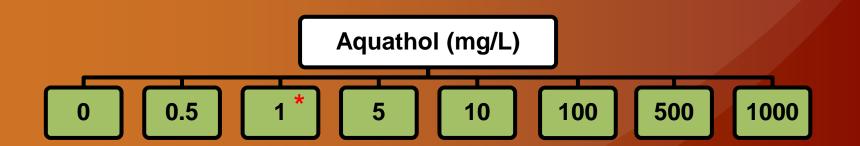
- Fatmucket (Lampsilis siliquoidea)
 - glochidia and juveniles
 - Panhandle Pebblesnail (Somatogyrus virginicus)
 - juveniles and adults
- Follows ASTM (2006) Standard Guideline for Conducting Toxicity Tests with Mussels
 - 24 h glochidia, 96 h juveniles and snails





Acute Toxicity Experiments


- Fatmucket (Lampsilis siliquoidea)
 - glochidia and juveniles
 - Panhandle Pebblesnail (Somatogyrus virginicus)
 - juveniles and adults
- Follows ASTM (2006) Standard Guideline for Conducting Toxicity Tests with Mussels
 - 24 h glochidia, 96 h juveniles and snails
 - Endpoint survival
 - Glochidia = shell closure response to NaCl
 - Snails and juvenile mussels = movement in 5 min
 - Median Lethal Concentration (LC50)



Acute Toxicity Experiments

Experiment with adult snails achieved maximum exposure concn. of 564 µg/L.

* Target application concn.

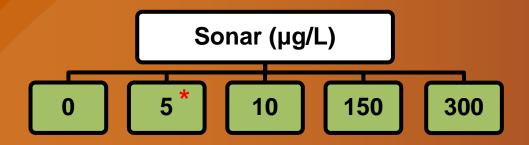
3 replicates/ treatment

28-d Chronic Experiment

Waccamaw fatmucket (L. fullerkati)

Static test, aerated, 500 mL, renewed at 72 h

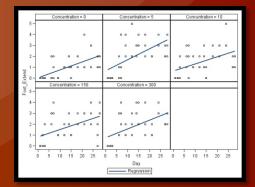
Endpoints


- Survival 7, 14, 21, 28 d
- Siphoning # siphoning/exposed
- Foot protrusion # extended/exposed

28-d Chronic Experiment

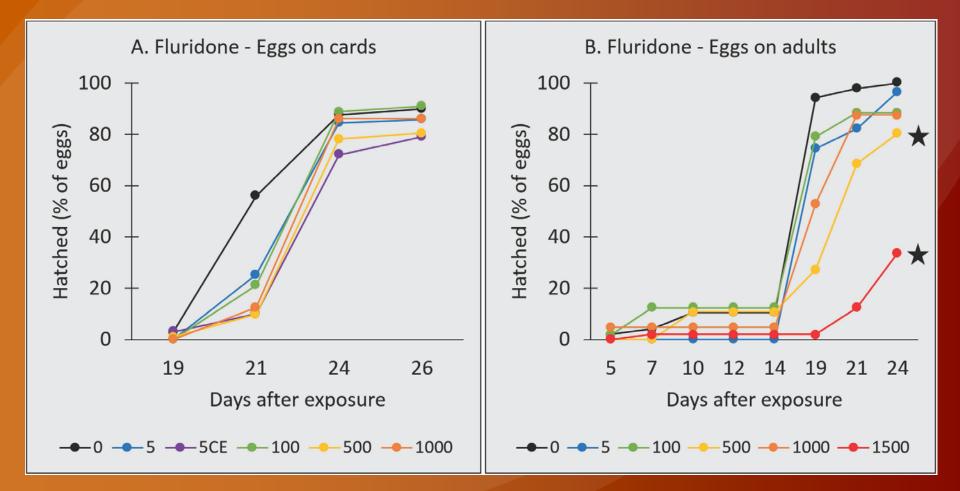
* Target application concn.

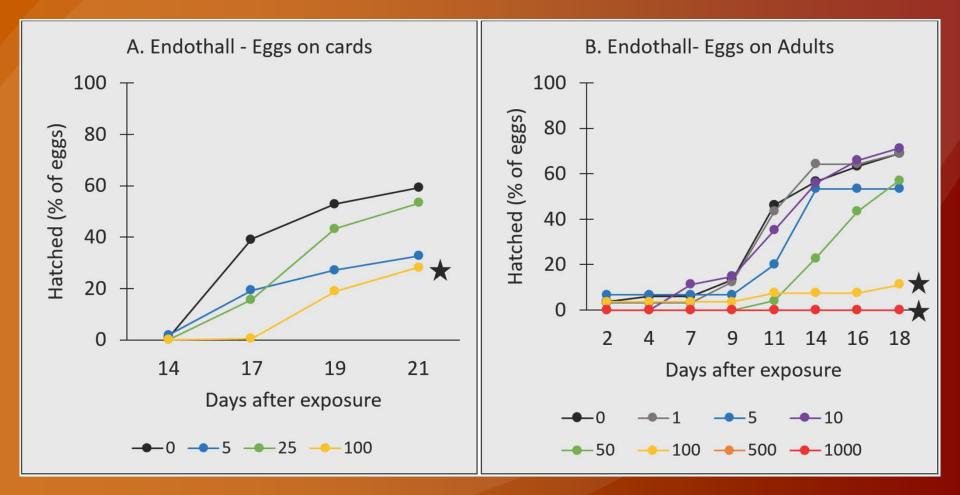
Statistical Analysis


Viability / Survival:

LC50, Spearman-Karber method (CETIS)

Siphoning, Foot Protrusion, Snail Egg Hatching
 Repeated measures ANOVA (PROC MIXED, SAS v. 9.3)
 Dunnett's post-hoc test




Acute and Chronic LC50s

Species	Life stage	Time point	Sonar (µg/L)	Aquathol (mg/L)
Fatmucket	glochidia	24 h	865 (729 – 1026)	31.2 (30.3 – 32.2)
	juvenile	96 h	511 (309 – 843)	34.4 (29.3 – 40.5)
P. pebblesnail	juvenile	96 h	500 (452 – 553)	
		48-h post	409 (329 – 509)	
	adult	96 h	> 564 (no mortality)	224 (157 – 318)
Wac. fatmucket	adult	28 d	ND – no mortality	

Snail Hatching Success Fluridone

Snail Hatching Success Endothall

Fluridone Comparative Toxicity - Acute

Sonar – PR & Genesis typically applied at 5 ppb

Max application rate = 150 ppb

Fluridone Comparative Toxicity - Acute

- Sonar PR & Genesis typically applied at 5 ppb
 - Max application rate = 150 ppb
 - LC50s for freshwater species
 - Fish (96 h): 1.8 13 ppm
 - Daphnia (48 h): 3.6 3.9 ppm
 - Snail (96 48 h post): 409 >564 ppb
 - Mussels (24 96 h): 511 865 ppb



Fluridone Comparative Toxicity - Acute

- Sonar PR & Genesis typically applied at 5 ppb
 - Max application rate = 150 ppb
 - LC50s for freshwater species
 - Fish (96 h): 1.8 13 ppm
 - Daphnia (48 h): 3.6 3.9 ppm
 - Snail (96 48 h post): 409 >564 ppb
 - Mussels (24 96 h): 511 865 ppb

 Mussels and snails most sensitive genera tested, but 100-173x > target application conc. (3.4 – 5.8x max rate)

Fluridone Comparative Toxicity - Chronic
 Sonar – PR & Genesis typically applied at 5 ppb
 Max application rate = 150 ppb

Chronic No Observed Effect Concentration (NOEC)
Fathead minnow (7 d): 600 ppm
Walleye (8 – 12 d): 780 ppb
<u>Mussel</u> (28 d): 300 ppb

Fluridone Comparative Toxicity - Chronic
 Sonar – PR & Genesis typically applied at 5 ppb
 Max application rate = 150 ppb

Chronic No Observed Effect Concentration (NOEC)
 Fathead minnow (7 d): 600 ppm
 Walleye (8 – 12 d): 780 ppb
 <u>Mussel</u> (28 d): 300 ppb

 Mussel – highest concentration tested, and 60x > target application conc. (2x max rate)

Endothall Comparative Toxicity - Acute

Aquathol-K typically applied at 1 – 5 ppm

Endothall Comparative Toxicity - Acute Aquathol-K typically applied at 1 – 5 ppm LC50s for freshwater species Daphnia (48h EC50): 223 ppm Fish (96h EC50): > 100 – 1071 ppm Mussels (24 – 96 h): 31 – 34 ppm Snail (96 h): 224 ppm

Endothall Comparative Toxicity - Acute Aquathol-K typically applied at 1 – 5 ppm LC50s for freshwater species Daphnia (48h EC50): 223 ppm Fish (96h EC50): > 100 – 1071 ppm Snail (96 h): 224 ppm Mussels (24 – 96 h): 31 – 34 ppm

Mussels most sensitive species tested, but 6 – 34x > target application concentration

May Treat Hydrilla with Minimal Risk

Sonar and Aquathol-K appear <u>acutely</u> non-toxic at typical application rates

LC50s: 6 – 173-fold greater than recommended applications

2 – 5.8 times max label rates

Scientific Products

Journal of Freshwater Ecology, 2015 Vol. 30, No. 3, 335-348, http://dx.doi.org/10.1080/02705060.2014.945104

Sensitivity of freshwater molluses to hydrilla-targeting herbicides: providing context for invasive aquatic weed control in diverse ecosystems

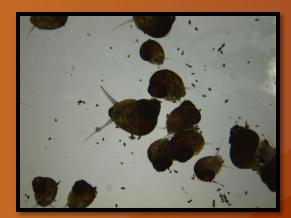
Jennifer M. Archambault^a*, Christine M. Bergeron^a, W. Gregory Cope^a, Robert J. Richardson^b, Mark A. Heilman^c, J. Edward Corey III^d, Michael D. Netherland^e and Ryan J. Heise^f

> Freshwater Mollusk Biology and Conservation 19:69-79, 2016 © Freshwater Mollusk Conservation Society 2016

REGULAR ARTICLE

LIFE STAGE SENSITIVITY OF A FRESHWATER SNAIL TO HERBICIDES USED IN INVASIVE AQUATIC WEED CONTROL

Jennifer M. Archambault1* and W. Gregory Cope1


¹ Department of Applied Ecology, North Carolina State University, Campus Box 7617, Raleigh, NC 27695 USA

Making Strides, BUT... Need to Learn Much More

Sublethal effects

- **Reproductive: transformation success (mussels)**
- Growth Biomarkers Behavioral
- Chronic exposures more relevant to lotic systems than acute
- Multi-stressor studies
- Indirect effects (e.g., DO, food availability)

