Silver Carp Establishment in the Lower White River, Arkansas: Effects on Native Fishes

Gulf & South Atlantic Regional Panel On Aquatic Invasive Species Meeting April 11, 2018 Jackson, Mississippi

University of Arkansas at Pine Bluff Department of Aquaculture and Fisheries

Arkansas ANS Management Plan (2013)

1) The extent to which the species is invasive and becomes a nuisance

2) Economic damage

3) Ecological damage

4) Harm to human health

5) Feasibility of management or control

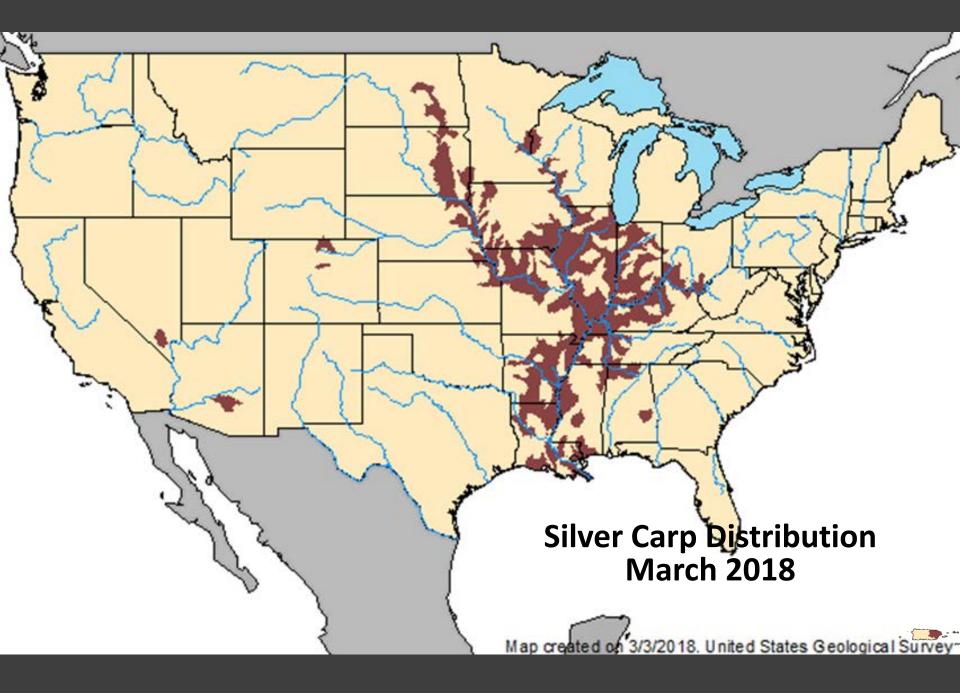
Arkansas Aquatic Nuisance Species Management Plan

May 14, 2013

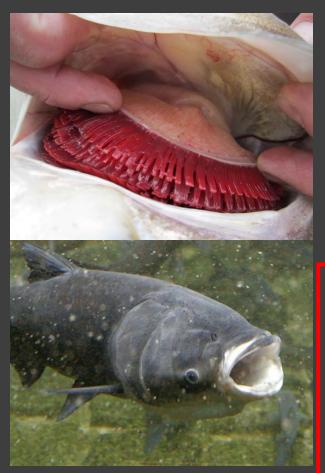
Bigheaded Carps

Invasive fishes whose population ranges have grown tremendously during the past 10-15 years

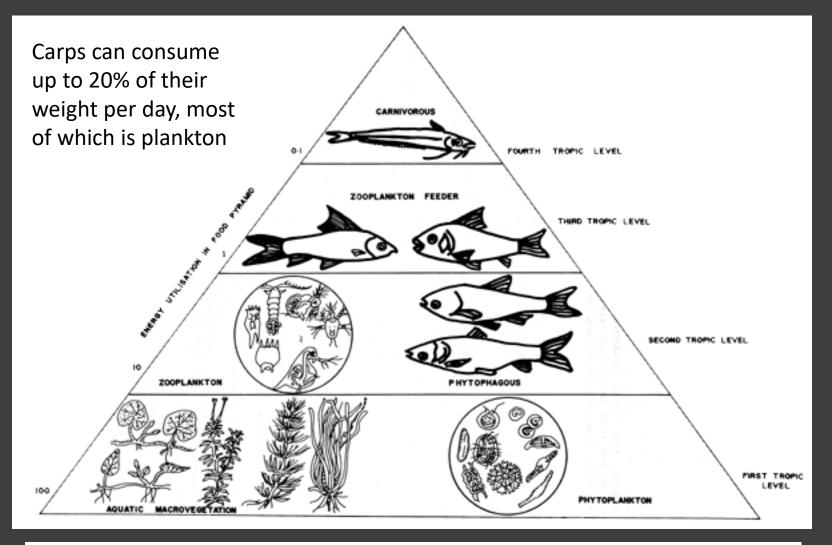
Bighead Carp Hypophthalmichthys nobilis

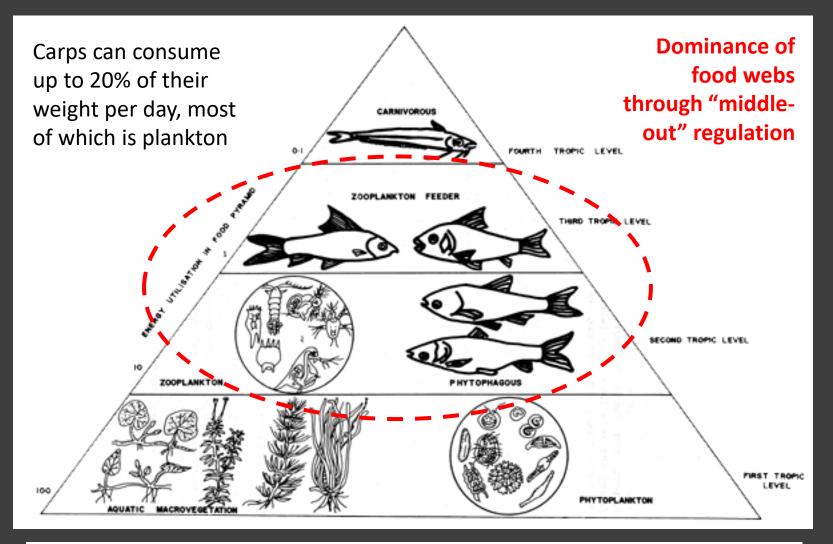

> Silver Carp Hypopthalmichthys molitrix

Bigheaded Carps in Arkansas


Introduced in 1973...

- **1975:** Found within the White River drainage (Kolar et al. 2005)
- 1980: Reported within the Arkansas and White River basins (Freeze and Henderson 1982)
- 1990s: Range extensions following several years of high flooding in the LMR and its tributaries (Kelly et al. 2011)
- 2000: Widespread expansion had heightened concern over potential impacts on native fishes
- 2005-2015: Recorded along the borders of 23 states with selfsustaining populations in the Mississippi, Missouri, Ohio, and Tennessee rivers (Kolar et al. 2005; Schofield et al. 2005; Nico et al. 2016a,b)




- High to extremely high abundances
- <u>Highly</u> planktivorous compete directly with adults of some native species and juveniles of many species
- Feeding consume particles as small as 10 μm in size (Vörös 1997)
- Broad tolerance for environmental factors
- Reproductive capacities mature 1 year sooner than in China (Williamson and Garvey 2005)
- Large sizes exceed mean sizes in China by 26% (Williamson and Garvey 2005)

- High to extremely high abundances
- <u>Highly</u> planktivorous compete directly with adults of some native species and juveniles of many species
- Feeding consume particles as small as 10 μm in size (Vörös 1997)
- Broad tolerance for environmental factors
- Reproductive capacities mature 1 year sooner than in China (Williamson and Garvey 2005)
- Large sizes exceed mean sizes in China by 26% (Williamson and Garvey 2005)

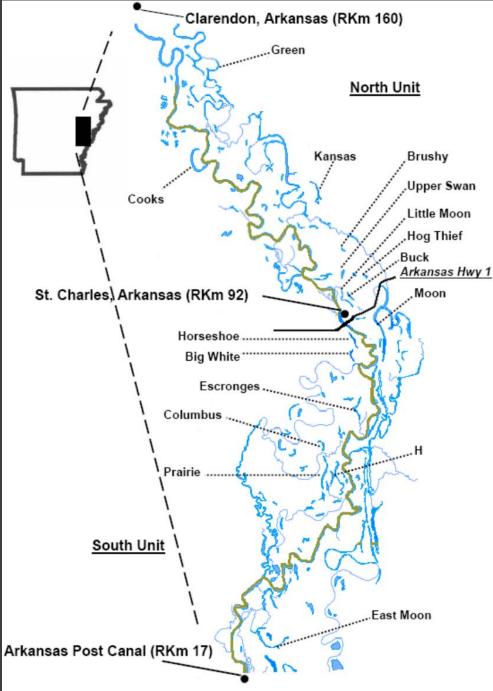
https://www.nps.gov/miss/learn/nature/ascarpover.htm

https://www.nps.gov/miss/learn/nature/ascarpover.htm

ARKANSAS CARPOCALYPSE!!!

White River

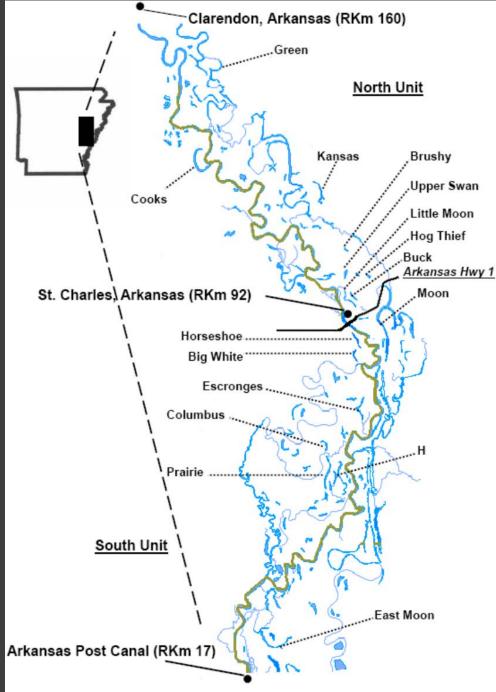
Lower White River


- Unique habitats and high fish diversity (~150 fish species with 11 endemics)
- Less altered than most river-floodplain ecosystems
- Nearby Cache-White River confluence listed as RAMSAR "Wetlands of International Significance"
- Extensive historical datasets available from WRNWR oxbow lakes (Lubinski 2004; Clark 2006)
- <u>Bighead and Grass carps</u> present, but at low densities
- <u>Silver carp</u> established within last decade, but now highly abundant in many areas
- <u>Black carp</u> still rare, but becoming more common in nearby drainages Location for two new studies I'm overviewing today...

Study Area

Dale Bumpers White River National Wildlife Refuge (WRNWR)

- 65,000 ha bottomland hardwood forest floodplain habitat
- Downstream of Clarendon, AR RKm 16-161
- ~360 floodplain lakes >2 ha 100s of lakes <2ha
- Levee-to-levee flooding 3 out of 5 years on average



Study Areas

Replicate oxbow lake sampling during "pre-carp" and "post-carp" periods

- 15 oxbow lakes total
- 7 lakes within North Unit
- 8 lakes within South Unit

Study 1 Cody Salzmann M.S. Thesis

Objectives – Study 1 a pre-carp/post-carp comparison...

Objective 1: Compare present-day (i.e., post-carp) oxbow lake fish assemblage attributes* with historical datasets collected during 2002-2005 (i.e., pre-carp invasion)

*Attributes include abundance, richness, evenness, and diversity

Objective 2: Examine relationships between present-day oxbow lake fish assemblage attributes and Silver Carp densities in oxbow lakes

Multi-Gear Fish Collections

60-Hz and 15-Hz timed electrofishing, mini-fyke netting, and exp. gill netting Done in replicate in all study lakes during July-August and October-November 2002 ("pre-carp" period) and 2017 ("post-carp" period)

Objective 1: Fish Assemblage Variables

- Species-specific fish abundances quantified by various measures of CPUE
 All CPUE measures will be gear-specific
 Ex: catch/net-night, catch/net, or catch/hr
- Total fish abundance, relative abundance of selected groups

Ex: particular trophic guilds, age-0, or fish ≥400mm TL

 Species indices – including richness and diversity All measures pooled across gears and seasons

Objective 1: Fish Assemblage Variables

- Species-specific fish abundances quantified by various measures of CPUE
 All CPUE measures will be gear-specific
 Ex: catch/net-night, catch/net, or catch/hr
- Total fish abundance, relative abundance of selected groups

Ex: particular trophic guilds, age-0, or fish ≥400mm TL

 Species indices – including richness and diversity All measures pooled across gears and seasons

Current Information (2017) using all datasets combined

Salzmann & Kaiser	Electrofishing* (60-Hz and 15-Hz)	Gillnetting	Mini-Fyke*	Total*
Fishes collected	21,499	1,446	12,090	35,035
Number of species	56	34	43	65

*identification of unidentified specimens pending (4,470+ from mini-fykes, 876+ from electrofishing) When using only summer netting & fall electrofishing...

Current Information (2017)

Salzmann & Kaiser	Electrofishing* (60-Hz and 15-Hz)	Gillnetting	Mini-Fyke*	Total*	
Fishes collected	9,661	488	9,747	19,896	
Number of species	48	30	39	61	

Historical Information (2002)

Lubinski	Electrofishing (60-Hz and 15-Hz)	Gillnetting	Mini-Fyke	Total
Fishes collected	7,643	529	33,893	42,065
Number of species	47	24	44	64

Assemblage Characteristics current vs. historical

Metric	Lubinski (2002)	Salzmann & Kaiser (2017)*
S (richness)	64	61
H' (diversity)	2.351	2.357
H' _{max}	4.159	4.111
E (evenness)	0.565	0.573
SRI (richness index)	0.312	0.432

Assemblage Differences

species lost and gained (all gears)

		Salzman	in &
Lubinsl	ki (2002)	Kaiser (2	017)
	C !	Ct	
Count	Species	Species	Count
1	CNLP	AGGR	2
257	CYMW	BHCP	1
57	DLSF	BHMW	21
1	GDTM	BKCARP	1
1	GSPK	BNMW	3
1	HFCS	CYDR	12
4	LKCS	FLIR	1
1,322	MMSN	GDYE	5
5	NSTM	GSCP	6
27	PDSN	QLBK	1
7	SGER	RVDR	2
14,928	SVMW	SRBS	6
		SRML	1

Assemblage Differences

species lost and gained (all gears)

Lubins	ki (2002)	Salzman Kaiser (2	
Count	Species	Species	Count
1	CNLP	AGGR	2
		внср	1
		BHMW	21
		BKCARP	1
		BNMW	3
		CYDR	12
		FLIR	1
		GDYE	5
		GSCP	6
		QLBK	1
		RVDR	2
		SRBS	6
		SRML	1

Assemblage Differences

species lost and gained (all gears)

Lubinsl	ki (2002)	Salzmann & Kaiser (2017)	
Count	Species	Species	Count
1	CNLP	AGGR	2
257	CYMW		
57	DLSF		
1	GDTM		
1	GSPK		
1	HFCS		
4	LKCS		
1,322	MMSN		
5	NSTM		
27	PDSN		
7	SGER		
14,928	SVMW		

Objective 2: Examining Relationships Between Fish Assemblages and Carp Densities

Establishment of a Silver Carp Density Gradient Across Replicate Lakes...

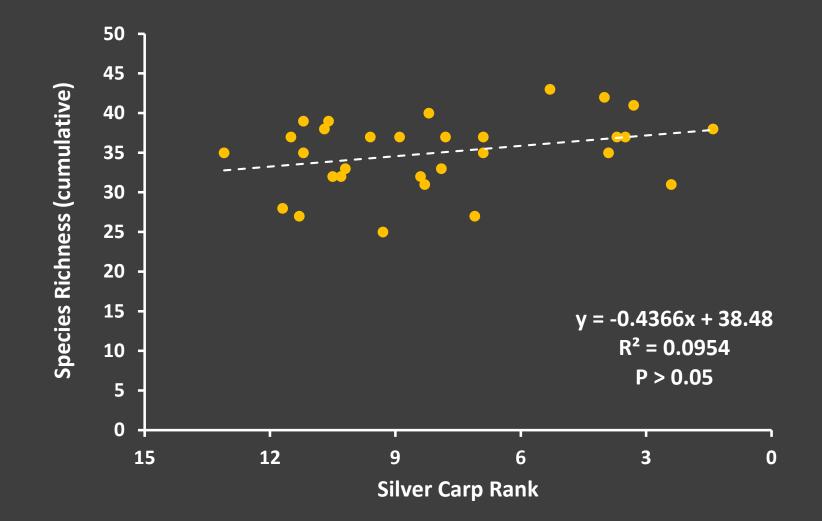
- Pop-Shocking (from boat electrofishing)
 - 60-Hz/500-V for 30 seconds
 - Visual observations of all carp "jumps" from three observers
- Boat electrofishing
 - Six 10-minute transects with GoPro cameras mounted and running
- Gill nets
 - Two net types, with experimental meshes ranging from 2.54-cm to 20cm (1-8")

Silver Carp abundances ranks averaged across gears & seasons

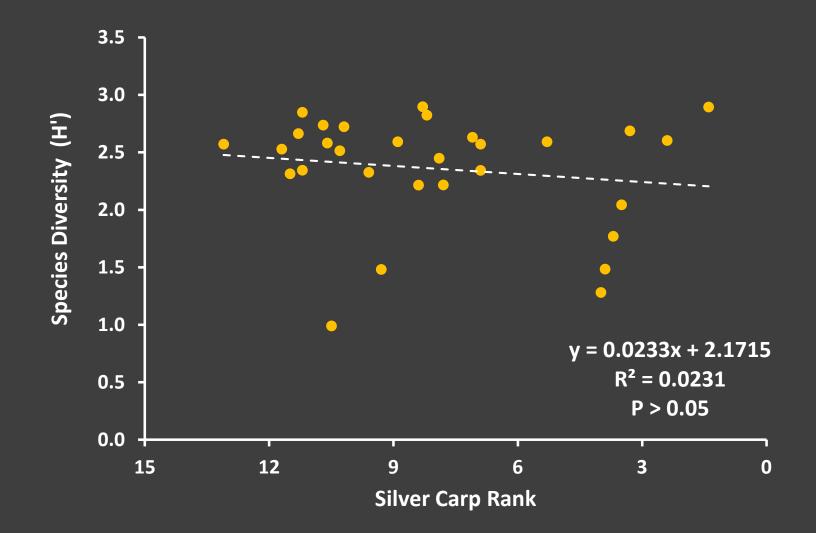
Lake	Summer	Fall	Mean Rank*
Cooks	3.5	1.4	2.5
Prairie	3.9	2.4	3.2
Kansas	5.3	3.3	4.3
Escronges	3.7	7.1	5.4
Columbus	4.0	8.3	6.2
Little Moon	6.9	6.9	6.9
Hog Thief	8.9	8.4	8.7
Moon	10.5	7.8	9.2
Н	9.3	10.3	9.8
Buck	7.9	11.7	9.8
Green	11.5	8.2	9.9
Brushy	11.2	9.6	10.4
Horseshoe	10.7	10.2	10.5
Big White	11.2	11.3	11.3
Upper Swan	10.6	13.1	11.9
	*2007200	d across all	soars and both soasons

*averaged across all gears and both seasons

Silver Carp abundances ranks averaged across gears & seasons


Lake	Summer	Fall	Mean Rank*
Cooks	3.5	1.4	2.5
Prairie	3.9	2.4	3.2 🔺 互
Kansas	5.3	3.3	4.3
Escronges	3.7	7.1	5.4
Columbus	4.0	8.3	6.2
Little Moon	6.9	6.9	6.9
Hog Thief	8.9	8.4	8.7
Moon	10.5	7.8	9.2 🧧
Н	9.3	10.3	9.8
Buck	7.9	11.7	9.8
Green	11.5	8.2	9.9
Brushy	11.2	9.6	10.4
Horseshoe	10.7	10.2	10.5
Big White	11.2	11.3	11.3
Upper Swan	10.6	13.1	11.9
	*		

*averaged across all gears and both seasons

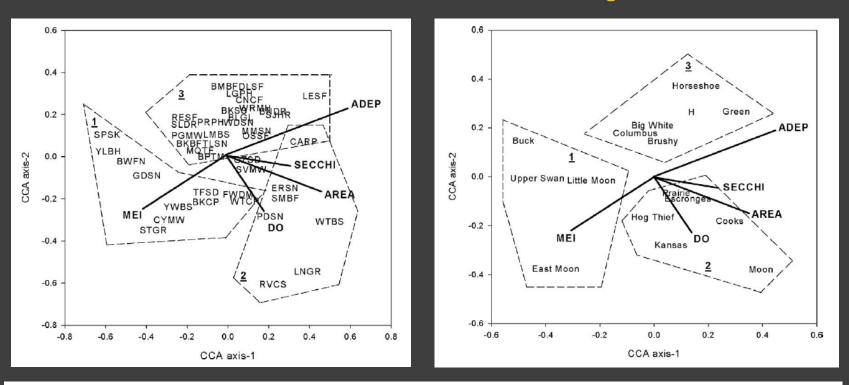
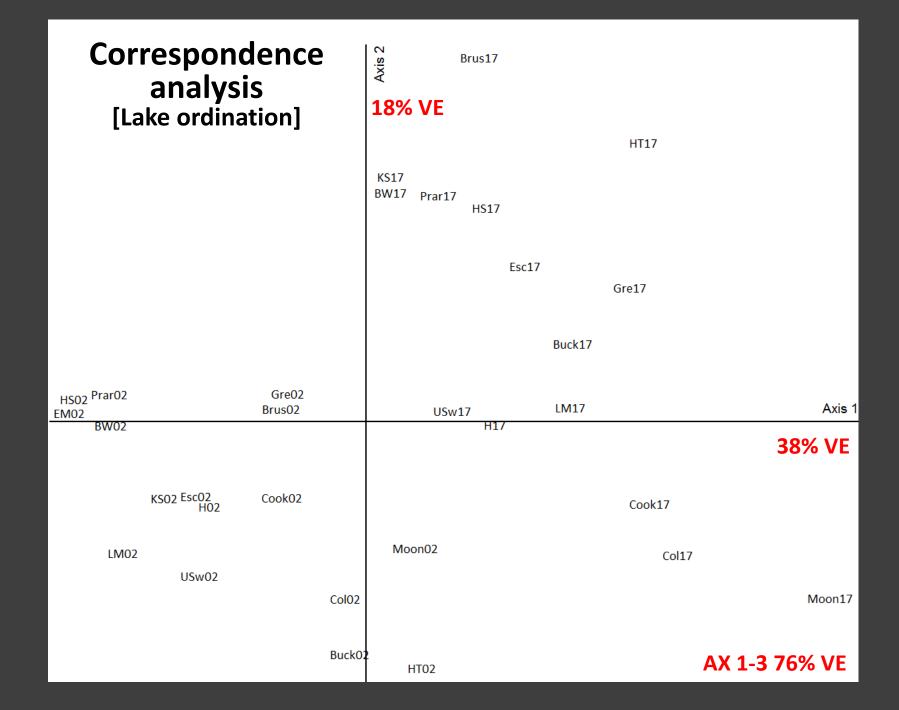
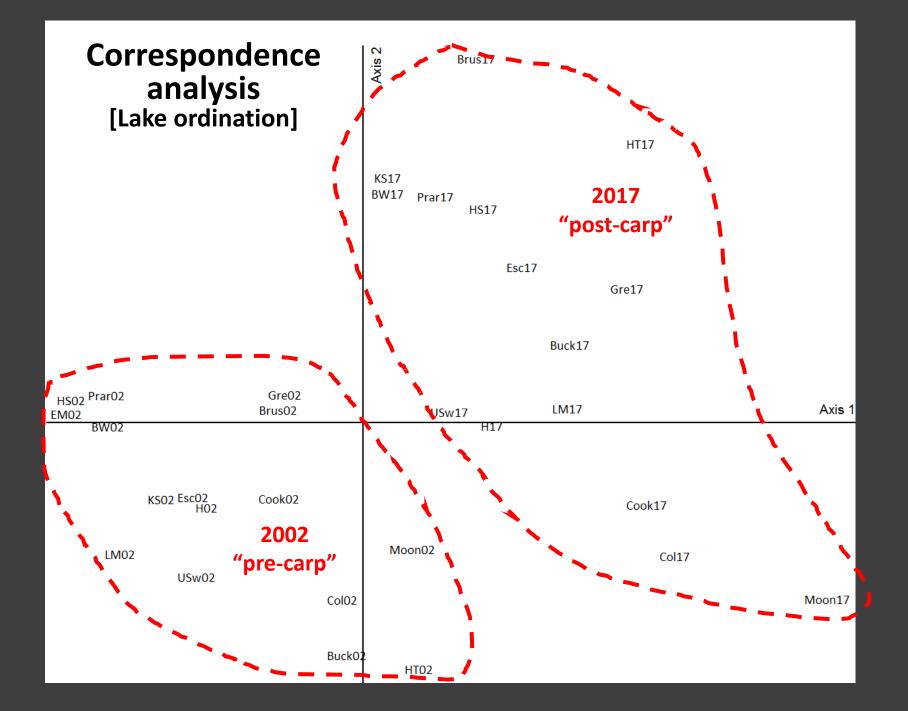
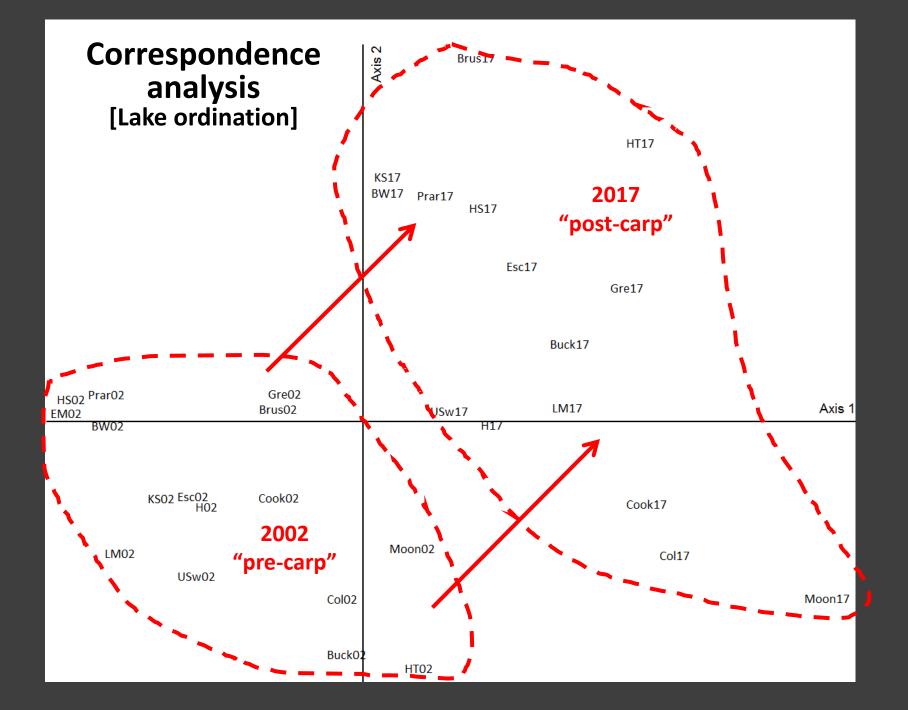

Silver Carp abundances ranks averaged across gears & seasons

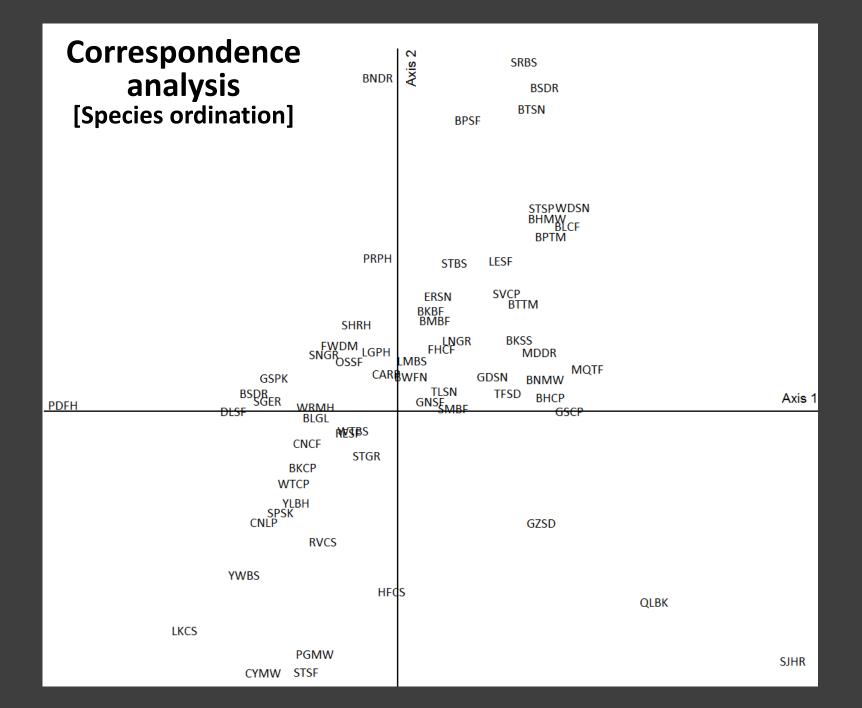
Lake	 Mean Rank	
Cooks	2.5	
Prairie	3.2	
Kansas	4.3	
Escronges	5.4	
Columbus	6.2	
Little Moon	6.9	
Hog Thief	8.7	
Moon	9.2	
Н	9.8	
Buck	9.8	
Green	9.9	
Brushy	10.4	
Horseshoe	10.5	
Big White	11.3	
Upper Swan	11.9	

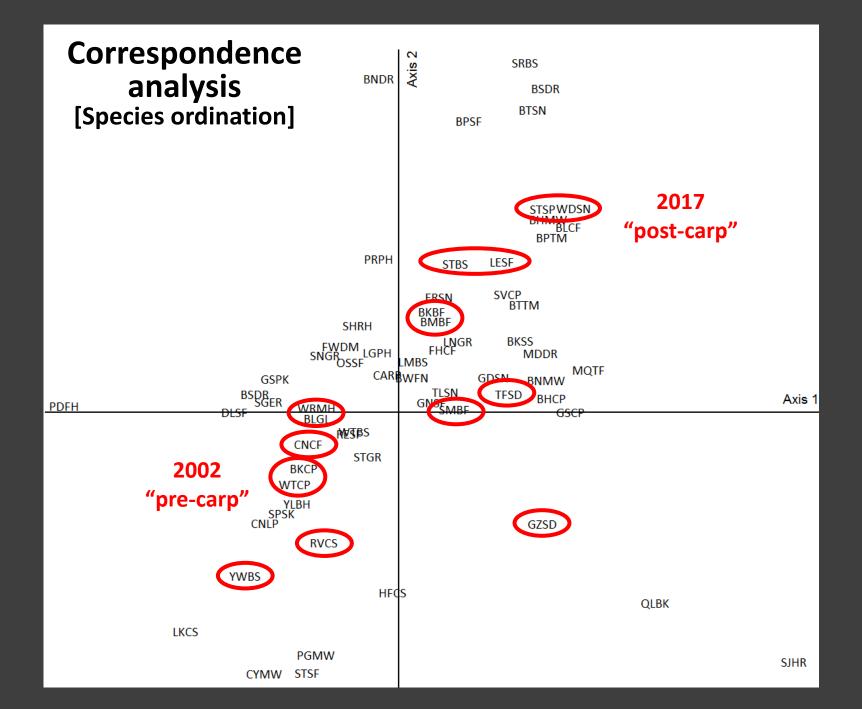
Species Richness vs. Carp Abundance

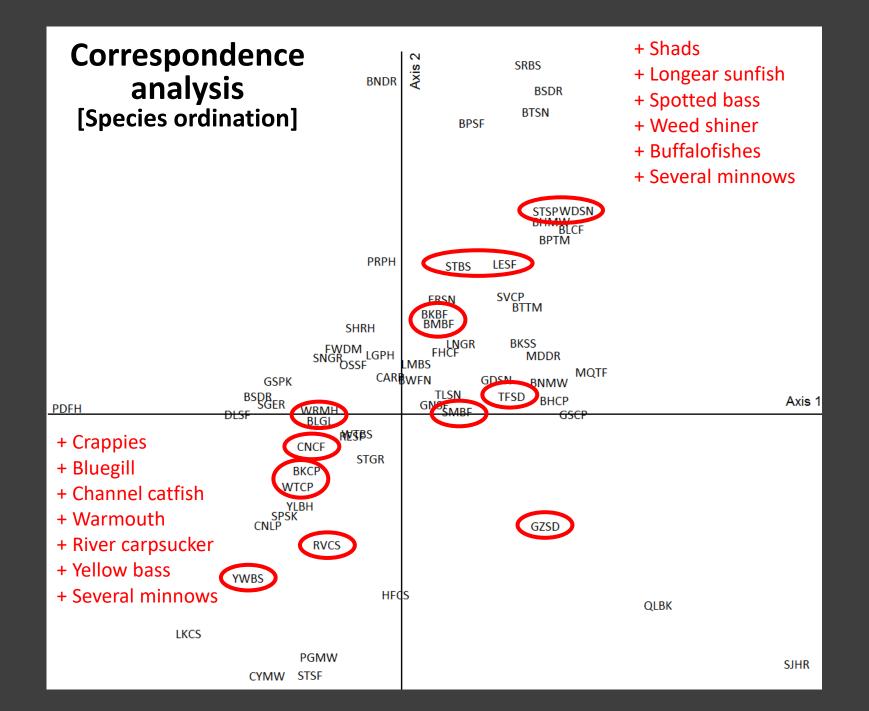
Species Diversity vs. Carp Abundance

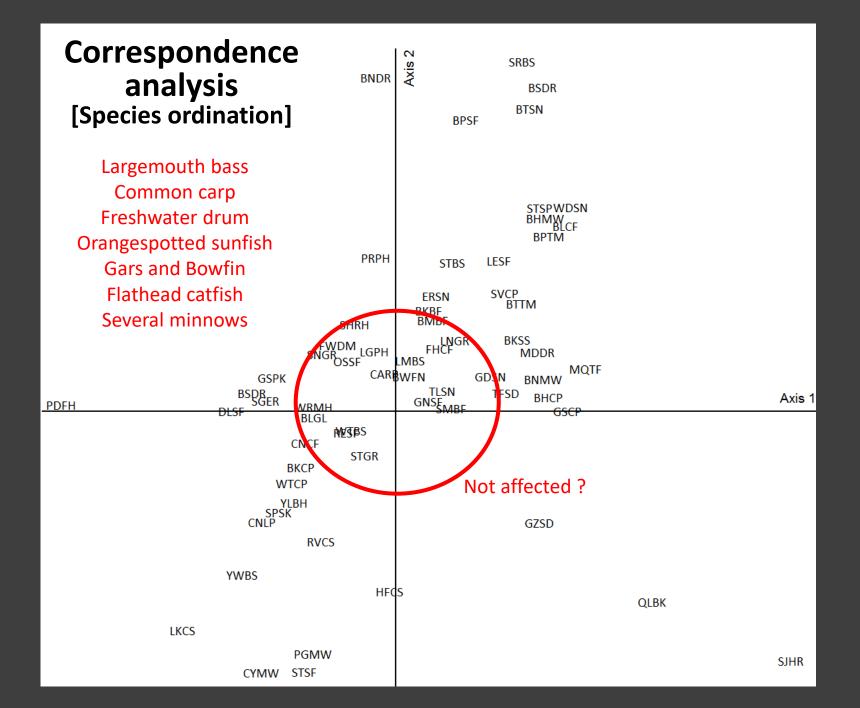
Multivariate analyses


FIGURE 2.—Scatterplot of canonical correspondence analysis (CCA) scores for floodplain lake fish communities in the lower White River system, Arkansas, 2002. Scores for axes 1 and 2 are plotted for individual lakes (top panel) and fish species (bottom panel; codes are defined in Table 4) and are based on rank-ordered abundances as described in Methods. Group numbers are defined in Discussion. Environmental variables are average lake depth (ADEP; m), lake surface area (AREA; km²), water clarity (SECCHI; Secchi depth, cm), dissolved oxygen (DO; mg/L), and morphoedaphic index (MEI). Vectors were rescaled by a factor of 2.


Multivariate analyses of fish assemblages present a more complete picture of possible carp responses...





Summary – Study 1

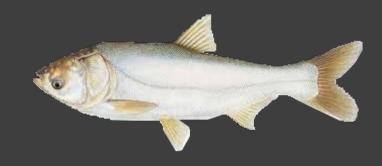
- Richness and diversity results not detectable, but are only part of the story...
- In 2017, 12 species not found compared to historical (2002) datasets, but 13 new species collected
 - most species lost or gained were historically rare
 - possibly due to gear and/or seasonal differences
- Shifts in fish assemblage structure likely, with some sport fishes affected

 Bluegill findings especially interesting
- <u>Cannot</u> state unequivocally that assemblage shifts are due to carps...
 periodic or constant assemblage shifts could be normal for these types of systems
- Additional analyses comparing W-L equations of key species...

Study 2 Joe Kaiser M.S. Thesis


If carps are having effects, when do they begin to occur?

VS.

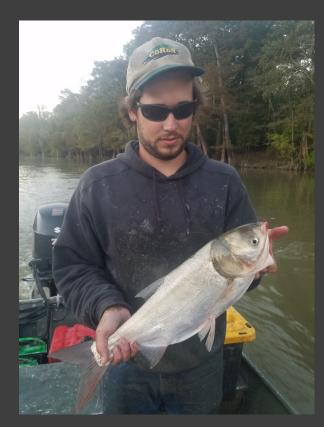


Effects on age-0 fishes

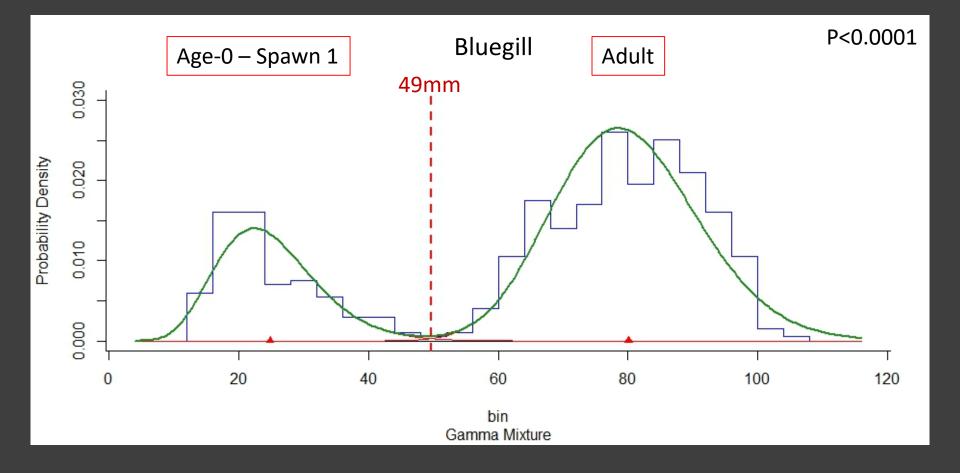
- <u>Highly</u> planktivorous competes directly with adults of some native species and juveniles of many species
- Germany (Costa-Pierce 1992)
- Missouri River scour basins (Tibbs and Galat 1997)
- Murray State University stable isotope niche overlap with juvenile gizzard shad (preliminary)
- Important to understand the effects on early life stage in fishes, which may relate to effects on adult fishes

Objectives – Study 2

- 1. Quantify juvenile (age-0) fish characteristics (e.g., abundance, growth, and condition) of selected fish species in lower White River oxbow lakes, and
- 2. Examine the relationships between juvenile fish characteristics and carp densities in these same lakes.



Species examined


- Nine (9) "target species":
 - Four piscivores


- Micropterus salmoides, M. punctulatus, and Pomoxis spp.
- Two planktivores
 - Dorosoma cepedianum and D. petenense
- Two omnivores
 - Lepomis macrochirus and L. humilis
- One common cyprinid (omnivorous)
 - Notropis texanus
- Representatives from most major trophic guilds and a common cyprinid

Cohort determination - Summer

Cohort determination - Fall

Age-0 maximum length from summer data only

Crappie spp. – 100 mm Bluegill – 49 mm Gizzard Shad – 120 mm Largemouth Bass – 130 mm Orangespotted Sunfish – 40 mm Spotted Bass – 116 mm Threadfin Shad – 100 mm* Weed Shiner – 100 mm*

*Small-bodied species- cohort determination problematic

Results

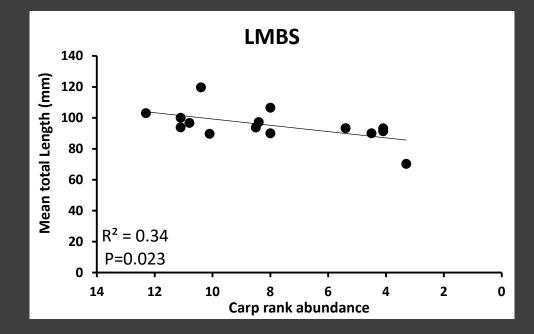
Summer Lengths and Weights July-Aug 2017

Target Species	TL (mm)	± SD	Weight (g)	± SD	K	± SD
Black Crappie	63	7	2.3	0.7	0.84	0.05
Bluegill	25	5	0.3	0.2	1.11	0.13
Gizzard Shad	86	13	5.7	2.2	0.83	0.04
Largemouth Bass	97	11	10.4	3.8	1.05	0.09
Orangespotted Sunfish	31	5	0.5	0.2	1.26	0.09
Spotted Bass	81	8	5.7	1.5	0.97	0.06
Threadfin Shad	59	10	1.7	0.8	0.76	0.02
Weed Shiner	41	2	0.5	0.1	0.66	0.02
White Crappie	64	8	2.2	0.8	0.74	0.05

Summer Lengths and Weights July-Aug 2017

Target Species	TL (mm)	± SD	Weight (g)	± SD	K	± SD
Black Crappie	63	7	2.3	0.7	0.84	0.05
Bluegill	25	5	0.3	0.2	1.11	0.13
Gizzard Shad	86	13	5.7	2.2	0.83	0.04
Largemouth Bass	97	11	10.4	3.8	1.05	0.09
Orangespotted Sunfish	31	5	0.5	0.2	1.26	0.09
Spotted Bass	81	8	5.7	1.5	0.97	0.06
Threadfin Shad	59	10	1.7	0.8	0.76	0.02
Weed Shiner	41	2	0.5	0.1	0.66	0.02
White Crappie	64	8	2.2	0.8	0.74	0.05

Fall 2017 numbers pending....

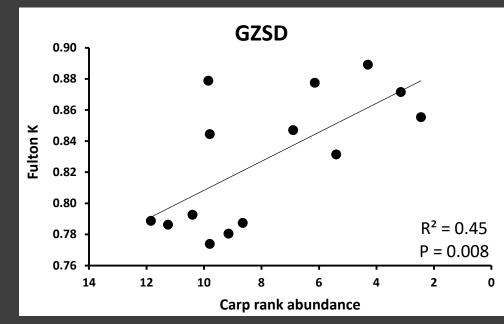

Silver Carp abundances ranks averaged across gears & seasons

Lake	 Mean Rank	
Cooks	2.5	
Prairie	3.2	
Kansas	4.3	
Escronges	5.4	
Columbus	6.2	
Little Moon	6.9	
Hog Thief	8.7	
Moon	9.2	
Н	9.8	
Buck	9.8	
Green	9.9	
Brushy	10.4	
Horseshoe	10.5	
Big White	11.3	
Upper Swan	11.9	

Summer July-Aug 2017

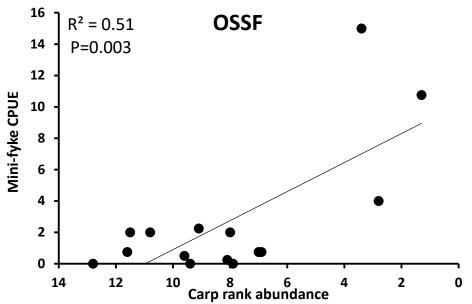
 LMBS: Mean length inversely related to carp abundance

Possible competition?



Summer July-Aug 2017

 GZSD: Fulton K directly related to increased carp abundance


Possible habitat or lake productivity influence?

Consistent with preliminary ordination findings, though they reflected an abundance response

Fall Oct-Nov 2017

 OSSF: CPUE directly related to carp abundance, but model dominated by two data points

Environmental influence?

Consistent with ordination findings

Pending work – Study 2

- Currently processing samples that will be used to estimate total fat content from composite samples of each target species and lake...
- One total fat estimate generated per species and lake (n = 135), with fat estimates modeled vs. carp rank abundances (n = 15)
- Reflects general condition and fitness after first growing season and entering first winter – *critical to future year-class strength for many species*
- Additional juvenile measures modeled vs. carp rank abundances
- Pending multivariate analyses focused on juvenile assemblages

Utility of the Research

- Again, <u>cannot</u> state unequivocally that responses observed are entirely due to carps...
- However, by comparing fish assemblage characteristics to carp densities...
 - Trends may suggest causation
 - Direction of trend suggests positive or negative effect
- Research will allow for development of further hypotheses on carp effects...
 - Possibly the basis for future experimental work
- Much more analysis pending for this spring and summer

Acknowledgements

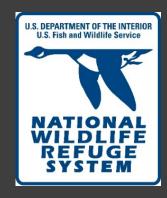
University of Arkansas at Pine Bluff

- Funding, equipment & facilities
- Jeremiah Salinger, Susie Frawley & Kyler Hecke
- U.S. Fish and Wildlife Service

Funding & facilities

Lindsey Lewis – Ecological Services (Conway, AR)

Jay Hitchcock & staff (WRNWR)


Tim Strakosh / Cindy Williams (Atlanta)

Gulf States Marine Fisheries Commission

James Ballard

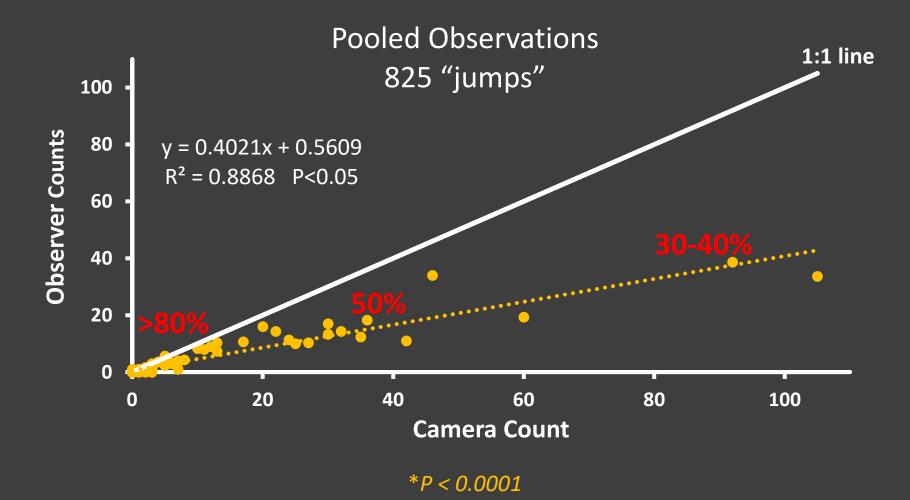
- Arkansas Game and Fish Commission
 Jimmy Barnett (ANS Coordinator)
- U.S. Geological Survey
 - Billy Justus (Little Rock)

FYI

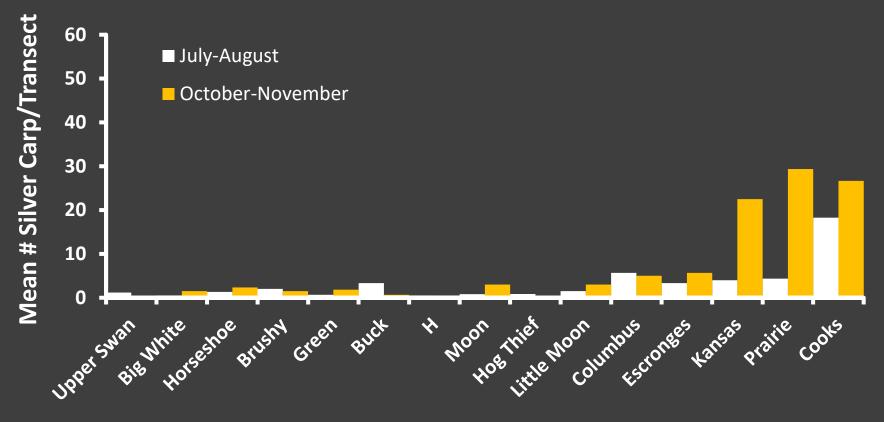
None found in entire study...

Two captured with one swimming away in good shape...

And we found one of these...

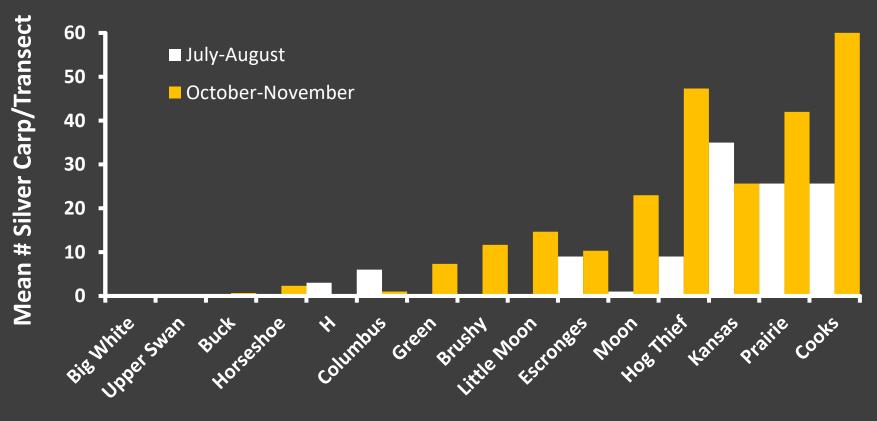


Questions

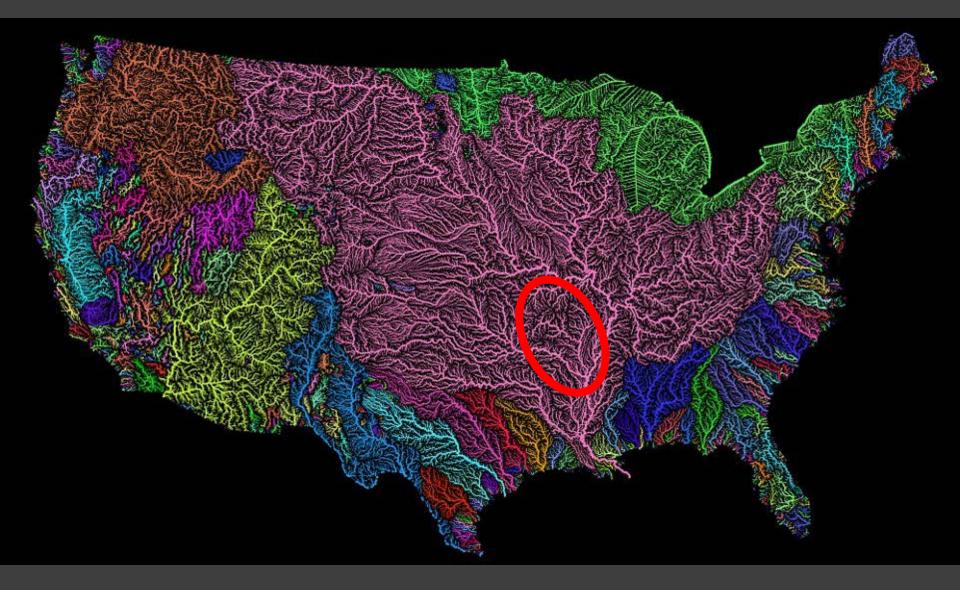

Ø

Visual Observations

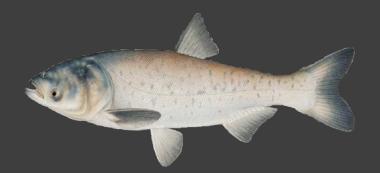
comparing observed carp "jumps" vs. camera counts



Camera Counts from Boat Electrofishing seasonal variation within lakes


Oxbow Lakes

Camera Counts from Pop-Shocking seasonal variation within lakes



Oxbow Lakes

U.S. River Basins

"Asian carps"

Bighead carp Hypophthalmichthys nobilis

Silver carp *H. molitrix*

Black carp *Mylopharyngodon piceus*

Grass carp Ctenopharyngodon idella

Ben Lubinski (2004) and Sandy Clark (2006) M.S. theses

Significant historical database that preceded widespread carp establishment...

Transactions of the American Fisheries Society 137:895-908, 2008 © Copyright by the American Fisheries Society 2008 DOI: 10.1577/T06-112.1 [Article]

Relationships between Floodplain Lake Fish Communities and Environmental Variables in a Large River–Floodplain Ecosystem

> BENJAMIN J. LUBINSKI¹ Aquaculture/Fisheries Center, University of Arkansas at Pine Bluff, 1200 North University, Box 4912, Pine Bluff, Arkansas 71601, USA

JOHN R. JACKSON Department of Biological Sciences, Arkansas Tech University, 1701 North Boulder Avenue, Russellville, Arkansas 72801, USA

MICHAEL A. EGGLETON* Aquaculture/Fisheries Center, University of Arkansas at Pine Bluff, 1200 North University, Box 4912, Pine Bluff, Arkansas 71601, USA

Fisheries Technical Articles

Potential for a Minimum-length Limit Regulation to Improve Floodplain Lake Crappie Fisheries in Arkansas

Michael A. Eggleton, Aquaculture/Fisheries Center, University of Arkansas at Pine Bluff, 1200 N. University, Box 4912, Pine Bluff, AR 71601 John R. Jackson, Arkansas Tech University, Department of Biological Sciences, 1701 North Boulder, Russellville, AR 72801 Benjamin J. Lubinski, Illinois Natural History Survey, Great Rivers Field Station, 8450 Montclair Avenue, Brighton, IL 62012 North American Journal of Fisheries Management 27:676-680, 2007 © Copyright by the American Fisheries Society 2007 DOI: 10.1577/M06-197.1 [Management Brief]

A Comparison of Shoreline Seines with Fyke Nets for Sampling Littoral Fish Communities in Floodplain Lakes

SANDRA J. CLARK¹ AND JOHN R. JACKSON*

Department of Biological Sciences, Arkansas Tech University, 1701 North Boulder Avenue, Russellville, Arkansas 72801, USA

Steve E. Lochmann

Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Mail Slot 4912, Pine Bluff, Arkansas 71601, USA

North American Journal of Fisheries Management 30:928-939, 2010 © Copyright by the American Fisheries Society 2010 DOI: 10.1577/M09-127.1 [Article]

Comparison of Gears for Sampling Littoral-Zone Fishes in Floodplain Lakes of the Lower White River, Arkansas

MICHAEL A. EGGLETON^{*}

Aquaculture/Fisheries Center, University of Arkansas at Pine Bluff, 1200 North University, Box 4912, Pine Bluff, Arkansas 71601, USA

John R. Jackson

Department of Biological Sciences, Arkansas Tech University, 1701 North Boulder, Russellville, Arkansas 72801, USA

BENJAMIN J. LUBINSKI Illinois Natural History Survey, Great Rivers Field Station, 8450 Montclair Avenue, Brighton, Illinois 62012, USA When using only summer netting & fall electrofishing...

Current Information (2017)

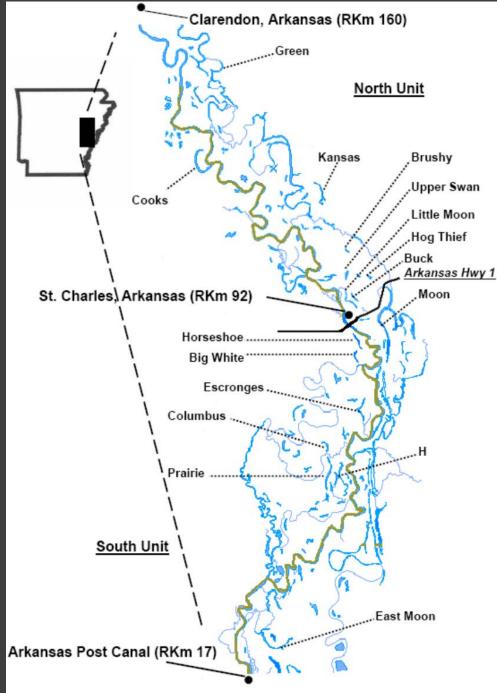
Salzmann & Kaiser	Electrofishing* (60-Hz and 15-Hz)	Gillnetting	Mini-Fyke*	Total*	
Fishes collected	9,661	488	9,747	19,896	
Number of species	48	30	39	61	

Historical Information (2002)

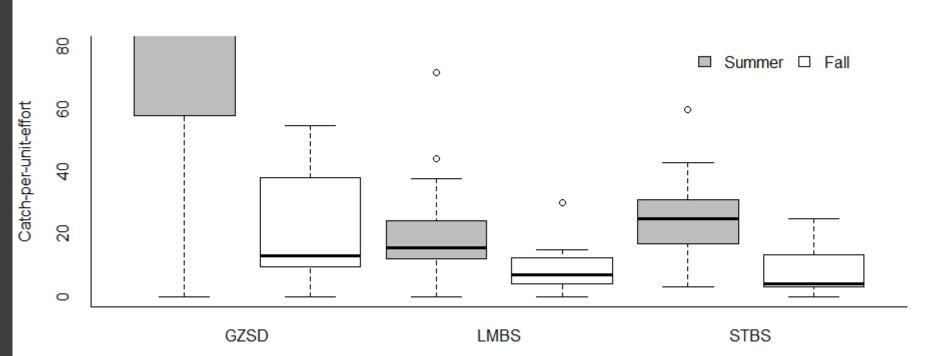
Lubinski	Electrofishing (60-Hz and 15-Hz)	Gillnetting	Mini-Fyke	Total
Fishes collected	7,643	529	33,893	42,065
Number of species	47	24	44	64

*identification of unidentified specimens pending (3,935 from mini-fykes, 583+ from electrofishing)

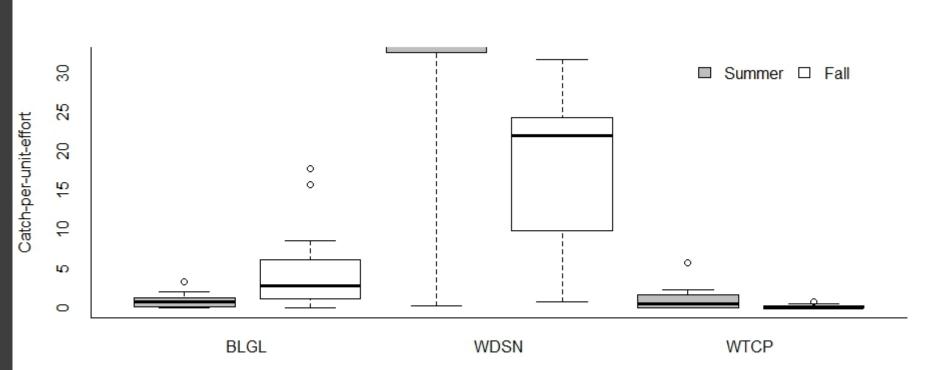
Study Area


Dale Bumpers White River National Wildlife Refuge (WRNWR)

• Area – 25 ha

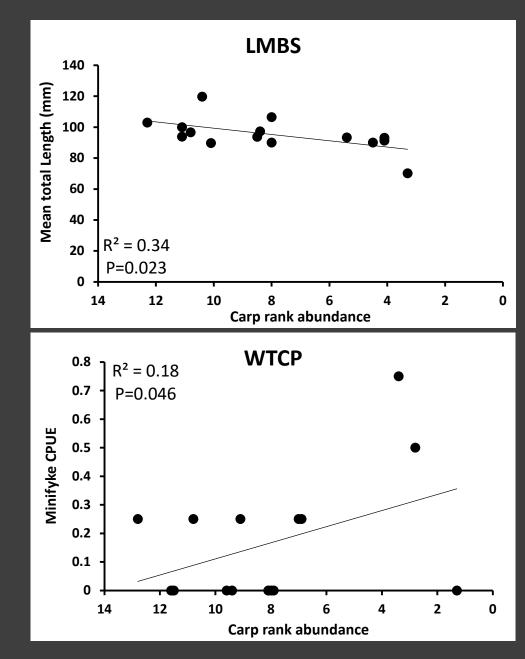

Minimum – 4.0 ha Maximum – 49.4 ha

- Average Depth 2.9 m Minimum – 1.6 m Maximum – 5.0 m
- Maximum length 3.4 km



Electrofishing CPUE Summer & Fall comparison

Mini-fyke CPUE Summer & Fall comparison


Summer July-Aug 2017

 LMBS: Mean length inversely related to carp abundance

Possible competition?

• WTCP: CPUE directly related to carp abundance

Possible habitat or lake productivity influence?

