


*Environmental DNA (eDNA)protocols for the early detection of rusty crayfish in lotic systems* 

Louise Nicholson David Argent

## Rusty Crayfish

- Native to Ohio river basin
- Invasive in 20 states, including North Carolina
- Introduced through bait buckets, educational use, intentional release
- Inhabits wide range of aquatic habitats, including both pools and riffles

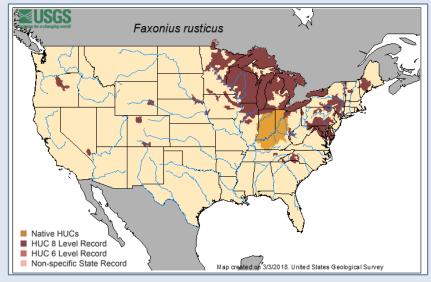
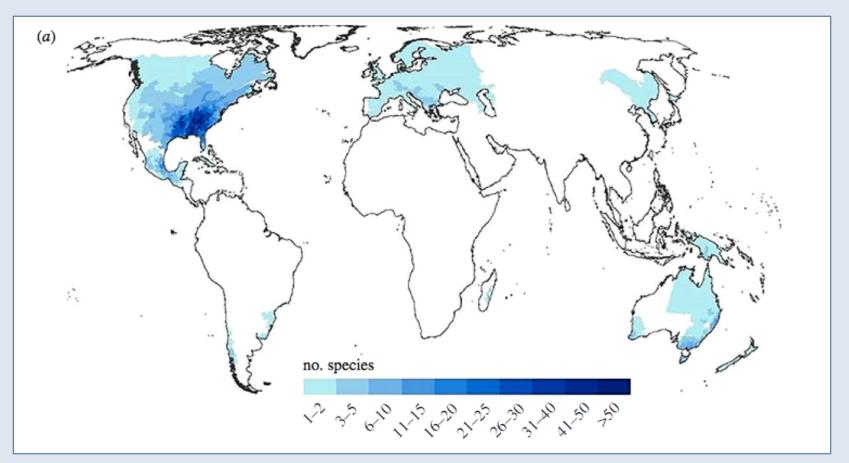



Photo credit: USGS

## Rusty Crayfish

Impacts native species through:


- increased interspecific competition and displacement of native crayfishes
- increased rates of predation by fishes
- hybridization with native crayfishes

Impacts other species through:



Photo credit: Animal Diversity Web

- destruction of aquatic plant beds and trophic shifts in predatorprey/grazer-vegetation relationships
- shifts in macroinvertebrate/fish assemblages



Distribution of global crayfish populations. Image: Richman et al (2015) Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Phil. Trans. R. Soc. B

### + Environmental DNA (eDNA) detection of invasive species

- Potential advantages: provides a highly sensitive method for detecting invasive species at low densities without the need for invasive sampling
- Potential issues for eDNA detection of crayfish: presence of an exoskeleton, benthic habitats
- eDNA sampling for crayfish has had varying degrees of success (Dougherty et al. 2016; Rice et al., 2018; Tréguier et al 2014)

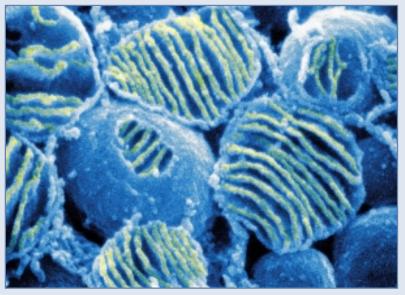



Photo credit: Pierce *Genetics Essentials* 





What factors affect eDNA detection rates for rusty crayfish?

Is eDNA sampling an effective method for detecting rusty crayfish in lotic systems?



- Collection of water samples under varying laboratory conditions
- Preservation of water samples
  - Filtration
  - Preservation in ethanol and 3M sodium acetate
- Field test protocol



# + Laboratory model stream system

Stream with a catchment pool

Flow rates from 0.167 l/s to 2 l/s



# + Laboratory model stream system

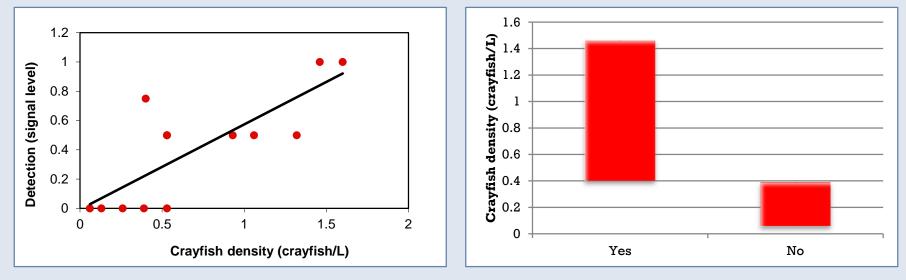
Stream with a catchment pool

Flow rates from 0.167 l/s to 2 l/s

Crayfish introduced to stream in tethered cages

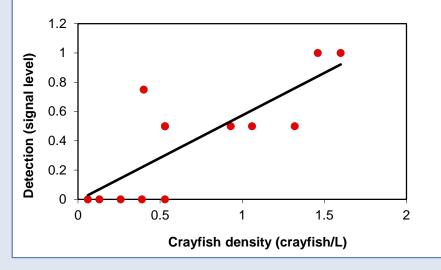




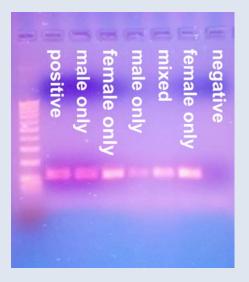



## Initial protocol development

- Crayfish collected from Blacklog creek
  - Faxonius rusticus
  - Faxonius obscurus
- Maintained in aquaria
- Used tissue samples for initial protocol testing
- PCR primers (Dougherty et al., 2016) amplify cytochrome c oxidase subunit 1 (COI) gene

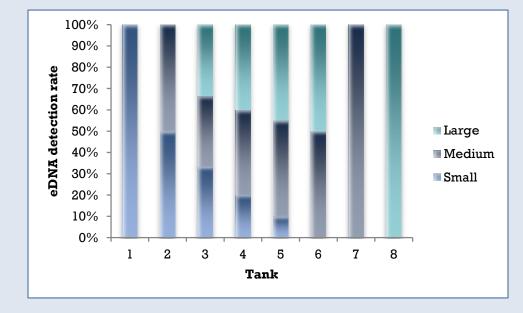



# + eDNA detection *is* affected by crayfish density




 $R^2 = 0.627$ 

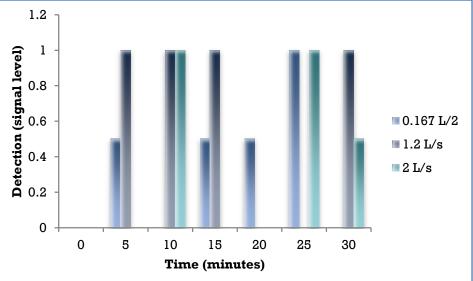
# + eDNA detection *is* affected by crayfish density




 Sex ratio affects detection strength




 $R^2 = 0.627$ 


### + eDNA detection success is not affected by crayfish size



# + eDNA detection is more variable in lotic conditions

- Water samples collected at 5-minute intervals
- Flow rates: 0.167 L/s, 1.2 L/s, 2 L/s





 Detection reliability increased when appendages/moulted exoskeletons were present



#### Sideling Hill



#### Wooden Bridge

### **Stream locations**

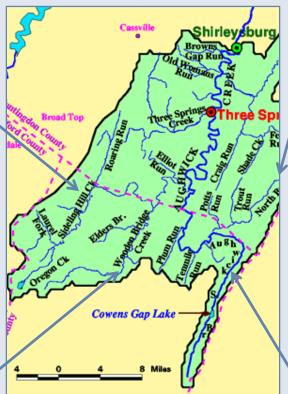



Photo credit:Weather.gov



#### N. branch Little Aughwick



Aughwick Creek

 eDNA collected by filtration and by preservation in ethanol and 3M sodium acetate





| Stream                                    | GPS<br>Location        | Comparative speed | Rusty Crayfish<br>Observed | eDNA<br>Detection |
|-------------------------------------------|------------------------|-------------------|----------------------------|-------------------|
| Aughwich Creek                            | 40.17306 -<br>77.92086 | Slow              | No                         | No                |
| Ninemile Run                              | 40.07020 -<br>77.93018 | Medium            | No                         | No                |
| Wooden Bridge<br>Creek                    | 40.08860 -<br>78.02242 | Medium            | No                         | No                |
| Ft. Littlelton (Little<br>Aughwich Creek) | 40.06740 -<br>77.96388 | Slow              | Yes                        | No                |
| N. Branch Little<br>Aughwich Creek        | 40.09184 -<br>77.90920 | Fast              | Yes                        | No                |
| Sideling Hill                             | 40.12207 -<br>78.02421 | Slow              | Yes                        | No                |

# + Conclusions



Density and sex ratio affects eDNA detection rates

- Likelihood of detection may vary seasonally. Field sampling be more successful conducted in the spring and summer, during the breeding and molting season
- Crayfish exoskeleton may inhibit the release of cells and extracellular DNA into the environment, making detection more difficult for this species
- Unclear whether eDNA may be an effective early detection method in lotic systems

## Future directions

- Re-sample sites in Spring/Summer, when crayfish likely to be moulting
- Modify detection method (nested PCR)
- Identify water quality parameters that influence detection rates



- Dr. David Argent
- Abigail Emmons
- Delaney Martin
- Gulf States Marine Fisheries Commission