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Schwalb Stream Ecology lab

Dispersal, ecology of zebra mussels

Unionid mussel distribution,
Reproductive ecology and behavior

Collaborative projects:
Environmental contaminants
Genetics to assess status of unionid
mussels




Invasion of dreissenid mussels
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Map produced by the U.S. Geological Survey
Nonindigenous Aquatic Species Database, February 20, 2018.




Impact of dreissenid mussels
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Dispersal
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Life stages:

planktonic larvae (veligers)
Juvenile settlement

Adults

Dispersal via:
Boats
Water current



Modelling dispersal via boats
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Collaboration with Todd Swannack,
USACE

Previous attempts to predict zebra
mussel invasion:

Dispersal model via boats (e.g.,
Bossenbroek et al. 2001).
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Habitat suitability (e.g., McMahon 2015)

— Our goal: Dispersal model + habitat
suitability

Invasions since 2012, mostly close to
urban centers.

—> Social aspect needs to be considered



The model

1. Number of infested boats travelling from invaded reservoir to another
lake, which depends on:

Number of boats per lake (based on registered boats per county)
Distance between lakes
Lake attractiveness (most attractive: large lakes near urban centers)

Lake attractiveness changes

R e number of boats arriving at a lake
| FRa considerably
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The model

2. Whether a lake becomes invaded depends on 1 (number of infested
boats arriving) and:

Threshold for invasion (number of infested boats required to guarantee a
successful invasion)

+ Habitat suitability (dissolved calcium/hardness, maximum lake depth,
pH, conductivity)

Habitat suitability index
—> affects survival probability of
arriving zebra mussels




Model predictions

Starting with Lake Texoma,

Model correctly predicted the
Invasion of the 11 reservoirs that
had been invaded at the start of our
study

+ 30 others.

| | Of those 1 has since been invaded
New reservoirs predicted (Lake Austin)

to become invaded

+ 4 are on watch list (Lake Lavon,
Richland-Chambers Lake, Lake Worth; and
Grapevine Lake)



Spatial variation in predicted
lake Invasions

Zebra mussel spread to East Texas
mostly habitat limited,

Further West more dispersal
limited.

Most lakes in Central Texas are

New reservoirs predicted _ : :
to become invaded predicted to become invaded in the

near future.



Preventive efforts: Boater compliance
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High compliance (86%) needed to
completely prevent new invasions.

inew lakes invaded

Austin, Lavon, Ray-lq‘ktiﬁﬁérd, Tawakoni, Richland-Chambers, LBJ, Buchanan, Grapevine.



Summary dispersal model

Lake attractiveness important parameter

Model predicts restricted spread to East Texas due to
habitat limitation, and to West Texas due to dispersal
limitation

Most lakes in Central Texas are predicted to become
Invaded unless boater compliance with preventive
measures is very high.



Downstream dispersal

In streams: zebra mussel populations depend on recruitment
from an upstream located lake or reservoir

- Impoundments facilitate persistence of zebra mussels in
larger rivers (Allen & Rancharan 2001)

- Low-head dams could act as stepping stones (Smith et al.
2015)



Texas’ large number of dams:
zebra mussel heaven

7,305 registered dams

+ large number of unreported
small and medium sized dams
(Chin et al. 2008),

—> could facilitate the spread of
zebra mussels in Texas?

But high temperatures may
limit them?




Dispersal and settlement rates

Objective:
Quantify dispersal and settlement rates

Veliger sample = filtered
~100 gal site water
through plankton net




Site 1 (0.4 rkm)
Site 0

Lowhead Dam——

Site 4 (13.1 rkm) {+)

Lampasas River

1
8 Kilometers

Lake Belton

O, ite 2 (2.5 rkm)

) Site 3 ( 6.0 rkm)

Leon River

ISite 5 (27 rkm)

Little River

Site 6 (54 rkm) (=

.

R Initial findings

2015-2016

Juvenile settlement
restricted to < 6rkm in 2015.
Up to 54 rkm in April 2016.

- Prolonged periods of increased
river discharge may have

facilitated their dispersal further
downstream in 2016.

Olsen et al. 2018. Aquatic Invasions
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Lake veliger densities vs. temperature

Logl0 Veliger (# per m3)
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Temperature = Key variable for zebra mussel reproduction,
Moderate densities around 30°C (up to 31°C in Lake Belton)

Temperature is a major driver for lake veliger densities,
which affect downstream dispersal




A Initial findings
2015-2016

Lake Belton

Site 1 (0.4 rkm)

- Site 2 (2.5 tkm) Substantial settlement limited to
sites upstream of low-head dam

Site 0

) Site 3 (6.0 rkm)
Low-head dam _

- More lentic conditions may
Leon River have enhanced recruitment

Site 4 (13.1 rkm) {+)

- Potentially important role of low-
fite 5 (27 rkm) head dams.

Lampasas River

Little River

—> Prediction: Higher recruitment
where low-head dams are present
™ (Canyon Lake>Belton>Stillhouse)

Site 6 (54 rkm) (=
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Riverine recruitment: Dispersal limitation

Belton lake (invaded 2013) Stillhouse Hollow
Juvenile settlement up to 54rkm,
1.2-46 ind./m?/week A, A

Stillhouse Hollow (invaded 2016) Ny AR %
up to 4.8 rkm, 0.8-4.1 ind./m?/week Lampasas River
Canyon Lake (invaded 2017)

up to 0.2rkm, only 1 juvenile

A " Riverine recruitment currently
~ | depends on how long ago lake
was invaded.

N

gk

Canyon Lake | > Role of low-head dams may

become more important in the
Guadalupe River future.



Veligers vs. juveniles

I Veliger Density
CZA Juvenile Settlement
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Veliger dispersal farther
downstream than juvenile
settlement.

- Habitat limitation?
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Depth (m)
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May: Highest veliger
densities, especially in
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As temperature increase
shift towards
metalimnion

- lower temperature
than epilimnion, higher
DO than hypolimnion

Do veligers choose the “Goldilocks” layer in summer?
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May: Highest veliger
densities, especially in
epilimnion, but still high
In hypolimnion (high DO)

As temperature increase

shift towards

metalimnion

- lower temperature
than epilimnion,
higher DO than
hypolimnion

Moderate densities in
hypolimnion even when
DO < 4mg/L late
July/August



Zebra Mussel Distribution in Two Texas Reservoirs

Scuba surveys from close to dam up to 12rkm (Canyon Lake) and
24rkm (Lake Belton) upstream
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Zebra mussels In Lake Belton
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Mussels not found >14m depth (associated with soft sediment and low
visibility)

Higher densities only closer to the dam in greater depths

- Temperature limitation?



Depth (m)

Zebra mussels in Canyon Lake
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Mussels not found >18m depth in Canyon

Mussels found in higher densities up to 12 rkm upstream
Closer to dam, higher densities at greater depths
- Temperature limitation?



Zebra mussel densities

Lake Belton: 270+132 ind. m? < Canyon Lake 568+182 ind. m?.
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Average Chlorophyll-a (ug/L)

Impact of zebra mussels
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Decline of Chl a from
11.3+0.9t0 4.2+0.6
post- invasion.

No significant difference in
water transparency.

Decline in phytoplankton
likely also caused a decline In
zooplankton, which may
affect fish recruitment
(Higgins and Vander Zanden
2010)



Impact on Unionid Mussels in Lake Belton?

- Several live individuals of at least 5 different species found
(Yellow Sandshell, Three-Ridge, Pondshell, Southern Maple Leaf, Tampico Pearly Mussel)

2016/6/4 1808 | > P e



Conclusions downstream dispersal and
distribution

Riverine recruitment:

- depends on source population and the factors affecting
reproduction in the lake.

- associated with optimal temperatures in lake relatively
high DO in hypolimnion (bottom-release dams).

Experimental studies needed to examine potential role of
habitat limitations.

Role of low-head dams may become more important in
coming years.

Adult zebra mussel population and ecological impacts
should be monitored.



Thanks!

TEXAS
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