

Invasive species environmental DNA (eDNA) data standards and database

WESLEY M. DANIEL, MATT NEILSON, AND MAGGIE HUNTER

WETLAND AND AQUATIC RESEARCH CENTER,

GAINESVILLE, FL

eDNA in the NAS Database

Sources of eDNA in a drop of seawater.

eDNA in the NAS Database

Smith-Root

eDNA in the NAS Database

- First effort to aggregate ALL aquatic invasive species eDNA data in a single database
- Collaborative effort with:

Inform a State <u>first</u> of any eDNA sighting

- Development conservative minimum data standards to help guide eDNA monitoring and adding information into the Database
 - Based on consensus of agencies and experts
- Use a easy to interpret hierarchy of statuses to help understand what a positive eDNA sighting means
- Work closely with the eDNA community (Federal and State)

- Inform a State <u>first</u> of any eDNA sighting
- Development community minimum data standards to help guide eDNA monitoring and adding information into the Database
 - Based on consensus of agencies and experts
- Use a easy to interpret hierarchy of statuses to help understand what a positive eDNA sighting means
- Work closely with the eDNA community (Federal and State)

How to reach consensus

We expect there will be other perspectives we haven't considered – let's discuss...

Some standards seem straight-forward

• Date, latitude/longitude, etc.

Some may need discussion

• Isolation approaches – List of approved? Trust a trusted source?

Some will be challenging – detection and quantification

- Should low shedding animals require higher sample volume
 - Min volume per species or class?
- How/if to report inhibition?

- Inform a State <u>first</u> of any eDNA sighting
- Development conservative minimum data standards to help guide eDNA monitoring and adding information into the Database
 - Based on consensus of agencies and experts
- Use a easy to interpret hierarchy of statuses to help understand what a positive eDNA sighting means
- Work closely with the eDNA community (Federal and State)

		False Positive (Type I)	False Negative (Type II)
Source of Detection Error	Method	Problem: Detect species when no target species eDNA is present in the sample	Problem: Fail to detect species when target species eDNA is present in the sample
		Sources: (1) Incorrect detection of non-target species (i.e., insufficient assay sensitivity) or (2) DNA contamination	Sources: (1) Insufficient assay sensitivity or (2) method failure during sample processing
		Solution: Improve assay specificity and exercise care when collecting, handling, and processing samples. Include negative controls in experimental design.	Solution: Improve assay specificity and exercise care when collecting, handling, and processing samples. Include positive controls in experimental design.
	Process	Problem: Detect target-species eDNA when species is absent from the ecosystem Sources: (1) Persistence of eDNA in the	Problem: Fail to detect species when present in the ecosystem because viable target- species eDNA absent in sample
		environment or (2) transport of eDNA from distant sources (e.g., barge traffic boaters, avian deposition)	Sources: (1) Failure to collect eDNA in sample or (2) eDNA degraded in sample Solution: Improve sample collection, handling.
		Solution: Improve knowledge of the "ecology" of eDNA in the environment	and processing methods.

Type of Detection Error

From Evans et al. 2017

DNA ≠ Specimen

Asian Carp Regional Coordinating Committee. 2013. Environmental DNA Calibration Study, Interim Technical Review Report. Kelly Baerwaldt, editor. 112 pages. Available at http://www.asiancarp.us/

Asian Carp Regional Coordinating Committee. 2013. Environmental DNA Calibration Study, Interim Technical Review Report. Kelly Baerwaldt, editor. 112 pages. Available at http://www.asiancarp.us/

Asian Carp Regional Coordinating Committee. 2013. Environmental DNA Calibration Study, Interim Technical Review Report. Kelly Baerwaldt, editor. 112 pages. Available at http://www.asiancarp.us/

- Inform a State <u>first</u> of any eDNA sighting
- Development conservative minimum data standards to help guide eDNA monitoring and adding information into the Database
 - Based on consensus of agencies and experts
- Use a easy to interpret hierarchy of statuses to help understand what a positive eDNA sighting means
- Work closely with the eDNA community (Federal and State)

www.free-printable-calendar.com

- Wesley Daniel Inverts, Mollusks, Herps, and Mammals
 wdaniel@usgs.gov
- Matthew Neilson Fishes and Technical details mneilson@usgs.gov
- Amy Benson Carps, Snakeheads and dreissenid mussels abenson@usgs.gov
- Ian Pfingsten Plants

ipfingsten@usgs.gov

- Cayla Morningstar Mollusks
- cmorningstar@contractor.usgs.gov
- Jonathan Freedman Fishes and Herps jfreedman@contractor.usgs.gov
- Justin Procopio Fishes and Crayfishes

jprocopio@contractor.usgs.gov

Thank You

NAS.ER.USGS.GOV

