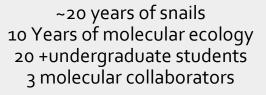

Now You See Them, Now You Don't? Using eDNA to confirm removal of invasive snails

Dr. Romi Burks Southwestern University

Coauthors: Cynthia Bashara, Lillian Dolapchiev, Cassidy Reynolds, Esme Rosas Barrientos, Chris Vaughn & Dr. Matthew Barnes


The Snail Lab, San Antonio River Authority, Dr. Chris Jerde & Southwestern Biology Department

TEAM AMPLIFIED

Dr. Ken Hayes Bishop Museum, HI Apple Snails **BURKS' LAB**

Dr. Matt Barnes '06 Snail Lab Alumni Texas Tech University eDNA

eDNA Detectives 2016-2019

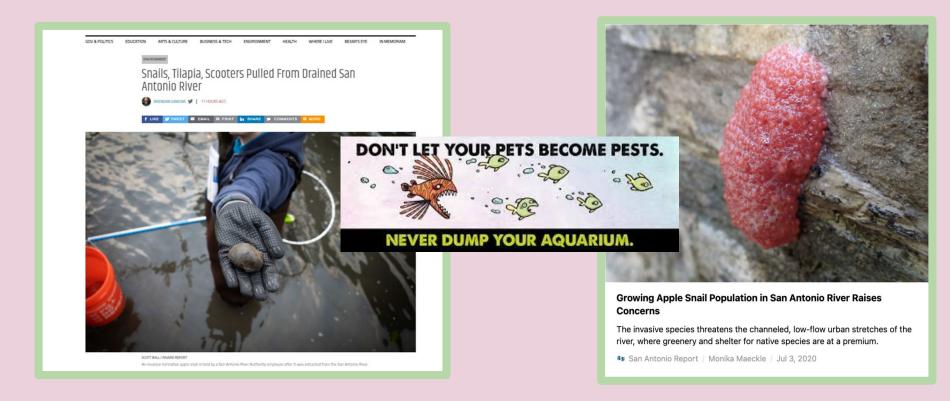
Team

2018-2020

Dr. Russ Minton Gannon University Mysterysnails

Not so Diverse: Distribution of haplotypes across southeastern US SUTX135-136 LEGEND Trons Distribution of haplotypes across southeastern US LEGEND Trons Distribution of haplotypes across southeastern US LEGEND Trons Distribution of haplotypes across southeastern US

Work by Carson Savrick


Why Apple Snails?

- Pomacea maculata
 - Invasive
- Non-native
 - South America
- Characteristics
 - o Gill & lung
 - Warm climate
 - Destructive
 - Fecund

TX map of USGS-NAS records for *P. maculata*. First near Houston, now more snails popping up in TX.

Apple Snails in the News

2000

Eggs

Average number per clutch

20

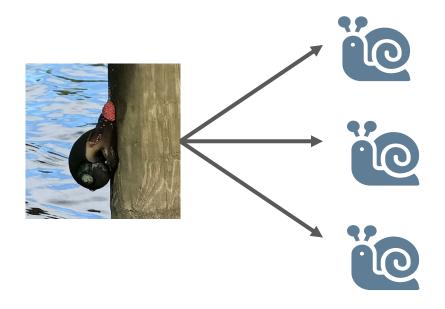
Clutches

Per reproductive season in TX (mid-May - October)

70%

Hatch

Of the clutch yields hatchlings on average


0.0001

Survive

Unknown but consider 99.99% mortality rate Why care?

Pomacea maculata

Reproductive Statistics

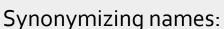
WHAT'S IN A NAME? WHAT'S CHANGED?

2002 2012-2015 2024

- "1 of the 100 worst"
- Assumed P. canaliculata
- Prohibited in 2002 (TX)
- Spread across SE US started
- Common language
- Regulatory power
- Scientific advancement

Zoological Journal of the Linnean Society, 2012, 166, 723-753. With 14 figures

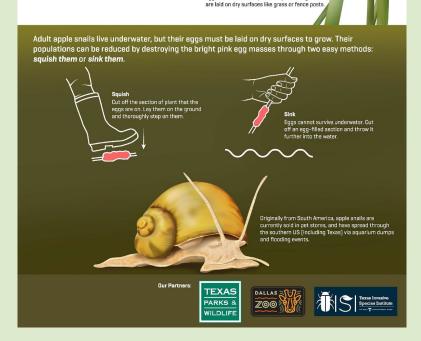
Comparing apples with apples: clarifying the identities of two highly invasive Neotropical Ampullariidae (Caenogastropoda)


KENNETH A. HAYES^{1*}, ROBERT H. COWIE¹, SILVANA C. THIENGO² and ELLEN E. STRONG³

¹Center for Conservation Research and Training, Pacific Biosciences Research Center, University of Hawaii, 3050 Maile Way, Gilmore 408, Honolulu, HI 96822, USA

²Instituto Oswaldo Cruz/Fioeruz, Av. Brasil 4365, 2104-900 Rio de Janeiro, R.J. Brasil ³Smithsonian Institution, National Museum of Natural History, P.O. Box 37012, MRC 163, Washington, DC, WA 20013-7012, USA

Received 3 May 2012; revised 10 August 2012; accepted for publication 22 August 2012


Pomacea insularum to Pomacea maculata

Avoid: channeled, giant, island, golden, GAS

Just say "maculata" apple snail

Help stop the **INVASIVE APPLE SNA** Invasive snails in the Pomacea genus threaten freshwater habitats in Texas. They are very distinct from native snails due to their large size [3-6 inches]. These snails can cause significant damage to rice crops and freshwater vegetation necessary for native aquatic species. In Asia, they are able to transmit a parasitic nematode Angiostronalylus cantonensis (rat lungworm) to mammals, including humans. The snail and parasite are both present in Florida and Louisiana: therefore, limiting their spread in Texas is necessary.

Pomaceo snails are hard to identify as adults, but their egg masses are a very obvious pink/orange color and

ENVIRONMENTAL DNA (eDNA)

"Environmental DNA (eDNA) refers to the extracellular, residual DNA shed from an organism found in abiotic environments" (Barnes et al. 2014).

QUESTION - Why use environmental DNA when you can "see" apple snails?

Cool Green Science Smarter By Nature

Abou

Big Ouestions

Innovations

Connect with Nature

Our V

IDEAS

The Promise of eDNA: A New Kind of Fieldwork to Guide Conservation.

BY SOPHIE PARKER

NOVEMBER 27, 2018

FUTURE OF CONSERVATION

How Scientists Use Teeny Bits of Leftover DNA to Solve Wildlife Mysteries

Environmental DNA helps biologists track rare, elusive species. It could usher in a revolution for conservation biology

eDNA: A successful technique for identifying cryptic species in a remote location

Thursday, 11 March 2021

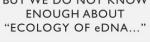
Home > Cryptic Tools for Cryptic Species: Using Innovative eDNA Sampling to Find t...

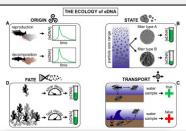
Cryptic Tools for Cryptic Species: Using Innovative eDNA Sampling to Find the Secretive Sharp-tailed Snake

Posted on October 22, 2021 Categories: BC Parks News, Featured

ORIGINAL ARTICLE @ Open Access @ (*) (=) (\$)

Detection of a cryptic terrestrial insect using novel eDNA collection techniques


Catriona D. Campbell, Dianne M. Gleeson, Elise M. Furlan, Kate A. Muirhead, Valerie Caron X First published: 17 March 2022 | https://doi.org/10.1002/edn3.295 | Citations: 3


TAKE HOME MESSAGE: WE USE eDNA A LOT IN CONSERVATION STUDIES...

Dejean et al. 2012

BUT WE DO NOT KNOW **ENOUGH ABOUT** "ECOLOGY OF eDNA..."

Barnes & Turner 2016

Environmental DNA: Used for cryptic species detection

Not exactly cryptic....or are they? Habitat, season, etc...

Associated phrases

Crypsis or cryptic

Cryptic diversity

Hyper-cryptic

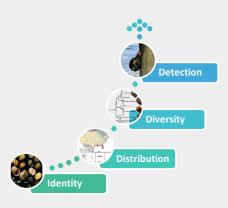
Cryptic speciation

Typically refers to camouflage or behavior(s) related to hiding (e.g., cryptic habitat, cryptic coloration, cryptic mate choice), or unexpected discoveries (e.g., cryptic introduction or cryptic invasion, cryptic genetic variation). 'Morphological crypsis' would describe taxa that are difficult to discriminate using morphology

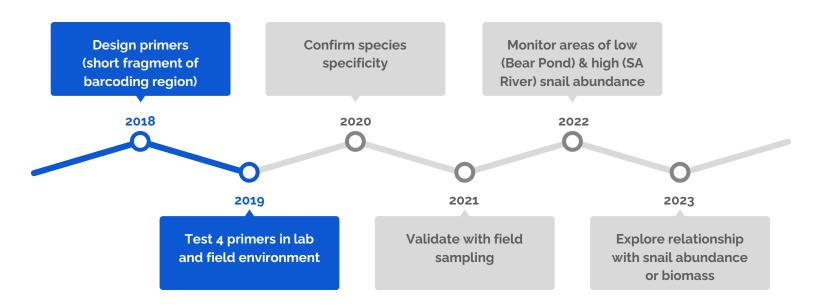
To allude to more than one cryptic species present in the studied taxon or larger group

To describe many occurrences of cryptic species in a study group (e.g., Adams et al., 2014)

Probably first cited in the 1950s but not defined (Price, 1958), this indicates evolutionary process(es) leading to the formation of cryptic species (e.g., in gastropods, Fernandes et al., 2021; Sanjuan et al., 1997). It is unclear if this is in reference to one specific, or several different pathways



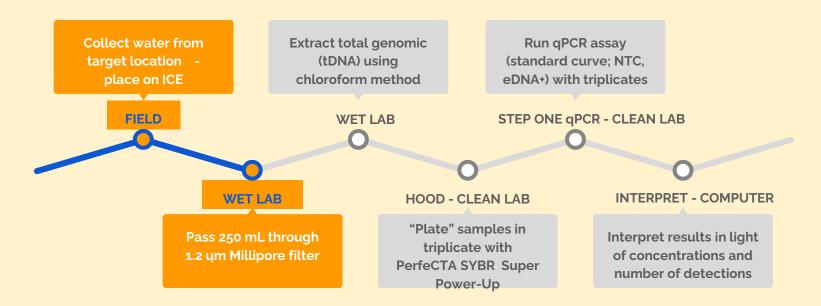
Applied / Conservation



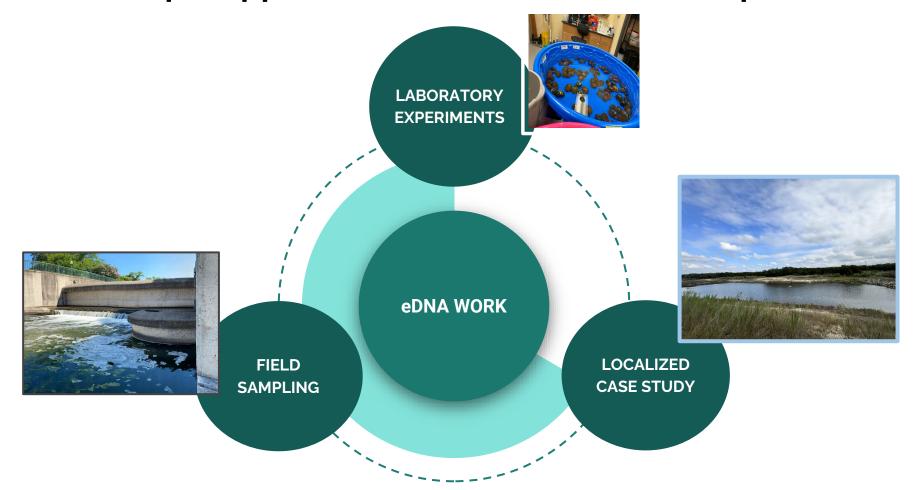
Detection: qPCR and Environmental DNA

Basic / Foundational

Development of eDNA Detection


Key points: eDNA done in collaboration with Dr. Matt Barnes; Sequences used based on past collaborations with Dr. Ken Hayes Although eDNA used to find cryptic species, there's nothing cryptic about its ability to identify to a species-specific level at low abundance.

Use specific small section to target a species = primer


Working species-specific primers: Banerjee et al. 2022

The Sampling Process

Key points: Verified identities based on past collaborations with Dr. Ken Hayes

Use multiple approaches to address different questions

Snail slime in real time: Challenges in predicting the relationship between environmental DNA and apple snail biomass

Romi L. Burks¹, Cassidy Reynolds¹, Esmeralda Rosas¹, Cynthia Bashara¹, Lillian Dolapchiev¹, Christopher L. Jerde² and Matthew A. Barnes³

Corresponding author: Romi L. Burks (burksr@southwestern.edu)

Citation: Burks RL, Reynolds C, Rosas E, Bashara C, Dolapchiev L, Jerde CL, Barnes MA (2024) Snail slime in real time: Challenges in predicting the relationship between environmental DNA and apple snail biomass. Management of Biological Invasions 15 (in press)

Received: 5 September 2023 Accepted: 14 April 2024 Published: 22 July 2024

Thematic editor: Mattias Johansson

Copyright: © Burks et al.

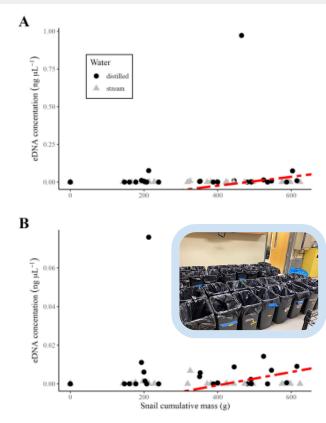
This is an open access article distributed under terms of the Creative Commons Attribution License (Attribution 4.0 International - CC BY 4.0).

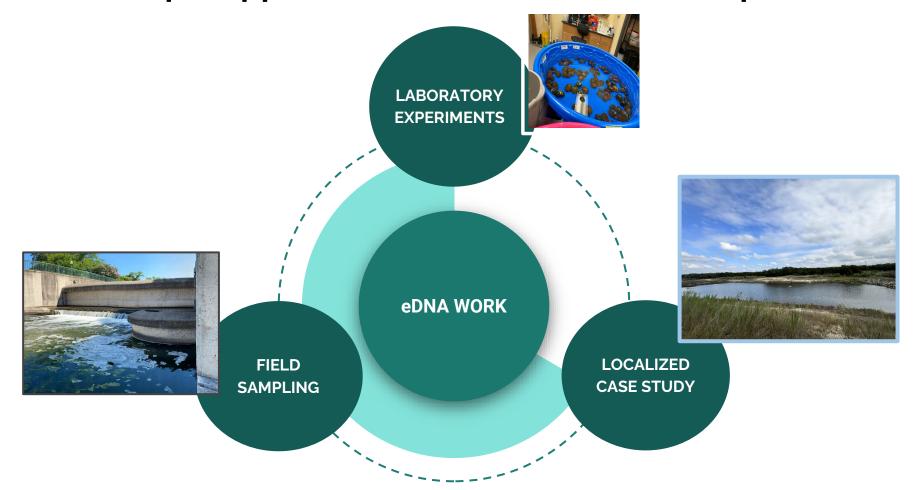
OPEN ACCESS

Abstract

As environmental DNA (eDNA) becomes a fixture in the invasive species management toolbox, expectations of its utility extend beyond presence/absence to analyses that provide more detailed information about target populations. Studies with fish and other vertebrates have reported moderately reliable, positive relationships between eDNA concentrations and biomass. However, few studies have considered this relationship in invertebrates. To address this gap, we investigated whether increasing biomass of apple snails (Pomacea maculata) resulted in a similar predictive relationship with eDNA concentration, and we did so under cold conditions that make apple snails less conspicuous and more difficult to detect with traditional methods. Placing snails in either distilled or stream water, we used a species-specific quantitative PCR assay to measure eDNA concentrations after 24 hr over an apple snail biomass gradient (0, 2, 4, or 6 snails; 143 to 624 g total biomass). Detection success of eDNA derived from apple snails kept in a small volume (i.e., 13 L) of cold water (13 °C) averaged 66% overall. Successful detection in distilled water (75%) exceeded the overall average. Lower detection efficiency occurred in stream water (58%). Despite the cold conditions, we observed snail activity in 90% of our replicates, but net eDNA accumulation failed to reflect patterns commonly observed with vertebrates. Censored regression modeling efforts, which account for a disproportionate number of zeros (i.e., non-detections), identified a significant predictive relationship between snail biomass and eDNA concentration, but only starting at a high amount of biomass (~ 422 g). Future management strategies to monitor apple snails will likely include eDNA, but its utility in ascertaining biomass remains unclear. Considering the ecology of eDNA of invasive invertebrates will help bolster managers' ability to understand the utility and limitations of this valuable tool.

Key words: mollusk, invasive species, Pomacea, detection, Tobit

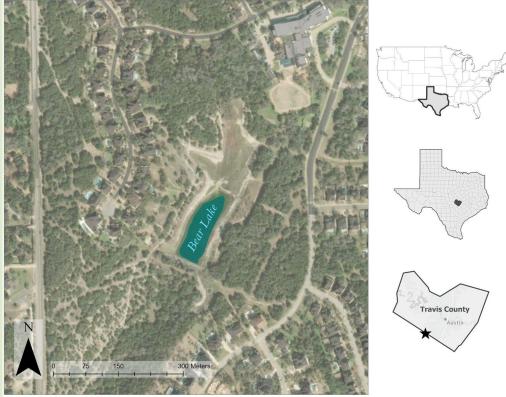



Figure 1. Relationship between net eDNA concentrations (ng μ L⁻¹) after 24 hr and cumulative apple snail (Pomacea maculata) biomass (g) in a laboratory experiment as a function of snail cumulative biomass (g) in a tank for two water treatment types: distilled (black circles) and stream (gray triangles). One container with four snails amassed a relatively large amount of eDNA compared to all other replicates. The Y-axes display different scales as the top panel (A) includes a statistical outlier while bottom panel (B) omits the outlier. The dashed red line represents the linear relationship suggested by the best-fit Tobit model (M.2), conc = -0.0143 + 0.000296(mass), for N = 64 (A) and conc = -0.0145 + 0.0000398 (mass), for N = 63 (B), respectively.

¹Southwestern University (SU), East University Avenue, Georgetown, TX 78626, USA

²University of California Santa Barbara (UCSB) Marine Science Institute, Santa Barbara, CA 93106-6150, USA

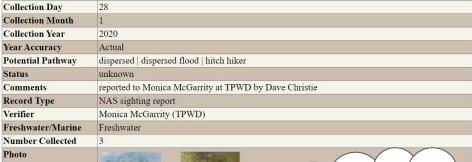
³Texas Tech University (TTU), Lubbock, TX 79409, USA


Use multiple approaches to address different questions

Location: Bear Lake (really a pond!)

USGS Record (1/28/20):

nas.er.usgs.gov/queries/SpecimenViewer.aspx?SpecimenID=1634245


(giant applesnail) Mollusks-Gastropods Species Profile

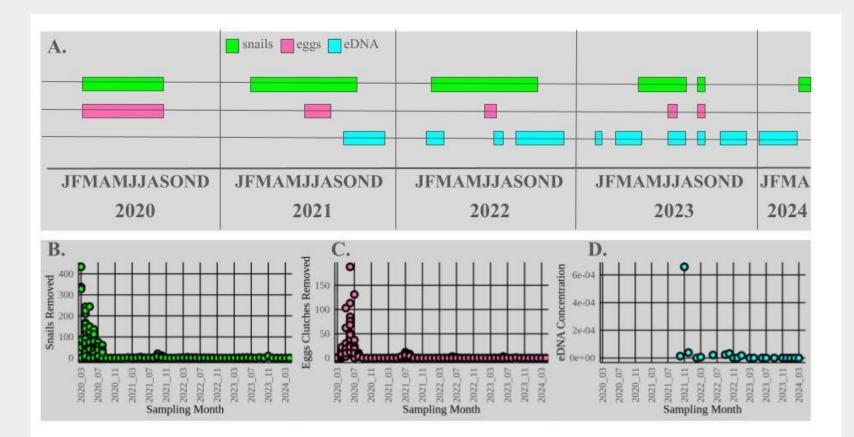
Pomacea maculata Collection Info

Point Map

Animated Map

A Impacts

Monica McGarrity



Monica McGarrity

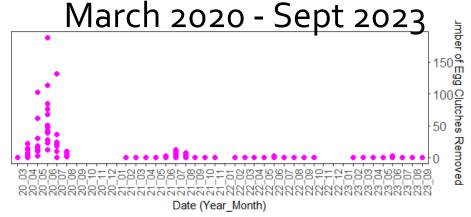
Citizen Science In action!

Specimen ID	1634245
Group	Mollusks-Gastropods
Genus	Pomacea
Species	maculata
Common Name	giant applesnail
State	TX
County	Travis
Locality	Bear Lake in the Meridian subdivision, an impoundment of Bear Creek.
Mapping Accuracy	Accurate
HUC8 Name	Austin-Travis Lakes
HUC8 Number	12090205
HUC10 Name	Onion Creek-Colorado River
HUC10 Number	1209020504
HUC12 Name	Bear Creek
HUC12 Number	120902050406
Man	Red OUACHITA MOUN

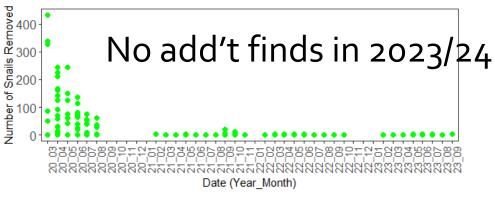
Small pond, Travis County/Austin, TX: Verified species & haplotype; ~5000 snails removed since pandemic

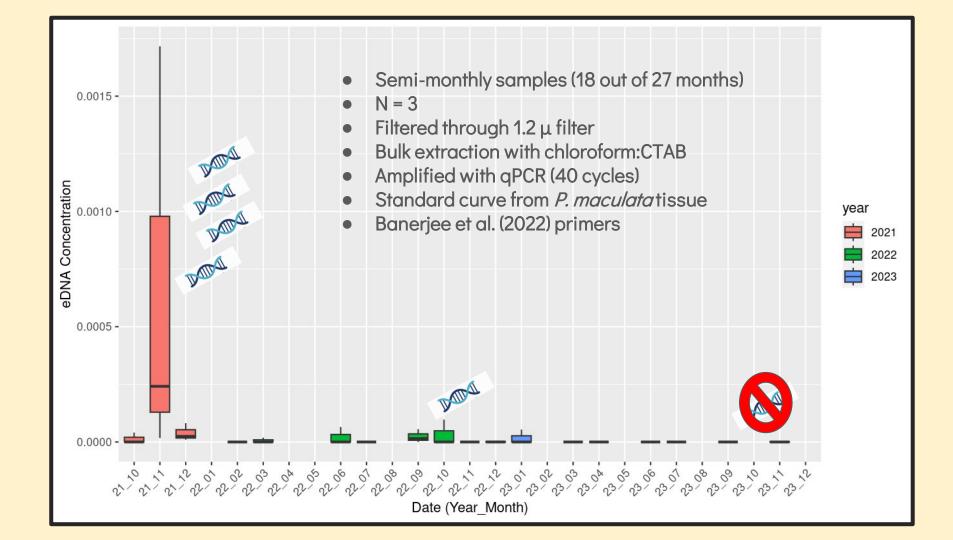
Removals:

 2020 Totals: Removed 4779 snails and 1624 egg clutches!


2021 Totals: Removed 97 snails and 95 egg clutches.

2022 Totals: Removed 53 snails and 8 egg clutches.


2023 Totals: Removed 17 snails and 7 egg clutches.


 Grand total: Removed 4946 snails and 1734 egg clutches.

How do we know?

Zero definitely exists. Zero is nothingness.

If zero did not exist, neither would nothingness.

If nothingness did not exist, things that are not real would exist.

Things that are not real do not exist.

Therefore, nothingness exists.

Hence, zero must also exist.

Beyond philosophy,

- We have replicate samples.
- We know these primers work on very low levels of eDNA.
- We used positive & negative controls in our analyses.
- We know the history of the pond.

nade with mematic

Take Home Messages

- Power of hand removals for invasive snails.
- Closed systems are rare...apply to rivers?
- Seasonality adds challenges for detection.
- Continue story with minimal monitoring.
- We need to understand what "zero" means.

Help stop the

INVASIVE APPLE SNAI

Invasive snails in the *Pomacea* genus threaten freshwater habitats in Texas. They are very distinct from native snails due to their large size [3–6 inches].

These snalls can cause significant damage to rice crops and freshwater vegetation necessary for native aquatic species. In Asia, they are able to transmit a parasitic nematode Angiostronglylus cantonensis [rat lungworm] to mammals, including humans. The snail and parasite are both present in Florida and Louisiana; therefore, limiting their spread in Texas is necessary.

Pomoceo snails are hard to identify as adults, but their egg masses are a very obvious pink/orange color and are laid on dry surfaces like grass or fence posts.

Take Away: Snails on the move: S-Car-Go(es)....

burksr@southwestern.edu

