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Environmental habitat and distribution

modeling

* Often the first step in risk
assessments

e Assesses risk of establishment

* |[n comprehensive assessment
also need components
* Impact
* Spread
* Feasibility to intervene

Stage

Spread
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Intervention

Prevent
Risk assessment

Contain
Control

Control
Ongoing management

Detect
Eradicate




Arrive - Propagule pressure from import

. 0
Impact — Horizon scans
* Negative, benign, or beneficial Establish- 840 species (395 fish)
(Schlaepfer et al. 2011 Con Bio) Giimate match wihin the U.S.
* Horizon Scans R i 4 1
* National Horizon Scan NN
» Southwest Regional Horizon Scan *\ (;W,; ’

* Focal pathway
* Boat hitchhiking

Invasion history
Human health or
economic
Ecological

Daniel et al. Biological Conservation. Accepted



Credits: California Division of Boating and Waterways

Many aquatic invasive species
spread via the recreational boater
pathway

Zebra mussels aided by byssal
apparatus and planktonic larval
stage

Free-swimming larvae carried in
ballast water, and boat hulls
Desiccation tolerance ~ 5 days



Objectives: Zebra mussel risk
assessment

1)

2)

3)

Establishment: Evaluate habitat
suitability of water bodies in Texas
and eastern New Mexico

Spread: Determine the
contribution of each lake to overall
lake network connectivity

Prioritization: Combine both
elements and identify critical lakes
to zebra mussel invasion

Study area

Albuquerque

224

Las Cruces
\

]

Amarillo
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Lubbock

Abilene
Midland ‘

Austin

San Antonio

Houston




Establishment: Habitat Suitability Index

= USGS

science for a changing world

PARKS &
WILDLIFE

Calcium, Chlorophyll-a,
DO, pH, Spec Cond,

Summer Temp

Unsuitable Low Suitability Moderately Highly Suitable
Parameter .
Suitable
Calcium (mg
<8 8-15 15-30 > 30
Cal/l)
Chlorophyll-a <2.0or>
2.0-2. 20-2 -2 2.5-
(g/L) o5 0-2.5 or 20-25 8-20 5-8
Dissolved
< -7 7- >
Oxygen (mg/L) 3 3 8 8
<7.0o0r>
pH 9.5 7.0-7.8 0r9.0-9.5 7.8-8.20r8.8-9.0 8.2-8.8
Specific
Conductance <30 30-60 60-110 >110
(us/cm)
SummerWater | _ . 30 26-32 10-20 20-26
Temperature (C)

Credits: Adapted from Mackie and Claudi (2010)




Spread: Lake Connectivity

* Network analysis to represent flow of
organisms between locations of
topological importance

* Nodes are lakes
* Edges are roadways
* Maximum edge distance 363 km \
* Lakes within this distance of each edges
other are connected (or IirLIf,)

* Three centrality measurements to
describe connectivity

* Degree score, betweenness score, Credits: ©DQ Nykamp, Math Insight
and cutpoints

nodes (or vertices)




Hubs, stepping stones, and g
cut points |

* Degree score is the number of connections to
other lakes -> hub
* Ahighly connected lake is more likely to be 7
invaded and become a hub for further spread .. N lntay
* Betweenness is the frequency a lake is located on |
the shortest path between two lakes -> stepping
stone
* Adisproportionate amount of flow within the
system will go through these lakes
* Cutpointis when removal of the lake causes a
continuous network to break into isolated parts
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Hubs

Results: Network Analysis

Stepping stones
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a Critical lakes

R Y * Habitat and centrality
A measures not correlated

Fif o]

* Moderately or highly

B ' suitable habitat HSI > 0.33

* Hubs: Top 20% Degree
Score

B * Stepping stones: Top 20%
Cutpoint Betweenness Score

Stepping Stone
Lakes
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Model validation

* Infestation status and
* habitat suitability index (r = 0.32, p <0.001)
* network centrality scores (r =-0.15, p=0.34)

* Water samples from 20 lakes for eDNA
predicted by network and another
model

* No new detections




Discussion

* Study area lake habitat is broadly
suitable in western Texas — .

* Rarity of aquatic habitats will slow down PROTECT THE

e mmene s

dispersal? LAKES YOU LOVE.

STOP INVASIVE SPECIES.

* Highly connected network

* Multiple pathways of dispersal and
stepping stones

* No correlation between centrality

metrics and infestation status B . PRY
» Others have found correlation (Kao et al. Y .,
2021 BIOloglcal InvaSIonS) 2% |t is illegal to transport aquatic invasive species or to leave
. . op e . . X XD these wats s.without draining all water from your boat.
* Habitat swtablllty_?ood indicator of B e R e e e e
establIShment BU N 3 tpwd.texas.gov/Stopinvasives

* Other criteria necessary to help prioritize
limited resources



Feasibility to intervene

* Invasive species management is driven
by practicality as well as by the ecology
of a species (Osunkoya et al. 2019J Env
Mgmt)

 Eradication feasibility- the realistic
ability of managers to eradicate a
species within predetermined
spatial boundaries

* Giantsalvinia as model species

« Cost-efficient treatments are available
to eradicate small populations

 Ecological cost of no management
intervention is high

* Incipient invasion across the
southeastern United States




Objectives

e . Horizon scanning and e
| | o | climate matching
e Establishment: estimate distribution Jr

probability under current and future
climates

Eradication feasibility
scoring [ »

. . s _ 7
* Intervention: score waterbodies Jr
according to difficulty of eradicating Prioritization
T : \1 ranking =
* Prioritization: combine both elements to ;zf,zd;:;z;iz::fzz?f?;‘:.:‘y“‘“
rank waterbodies J0

A4
EDRR
Localized and
actionable

Roberts et al. 2024 Ecological Solutions and Evidence



Establishment Risk

* Inputs
« WQ
* Anthropogenic
* Climate
* Occurrence data

* Output
* Probability of
occurrence

* Future RCP 8.5
(business as usual) to
year 2090
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Eradication difficulty

* Waterbody size

* Habitat complexity
* Woody wetland and
herbaceous wetland
* Ownership
* Private/public

* Most difficult
* Larger water bodies
* High habitat complexity
* Private land ownership

Waterbody size

Habitat complexity

i

R

Ownership




Prioritization

e Establishment risk and
eradication feasibility not
correlated

* Eradication feasibility
heavily depends on
landownership

* Co-production of
establishment and
eradication criteria

* Climate change moving
target

Frequency

36.5°N

36.0°N

35.5°N

35.0°N

34.5°N

34.0°N

33.5°N

33.0°N

2501

2001

-
(&)
o

501

1001

94°W 93°W 92°W 91°W

Prioritization
Rank

90°W
Owner
AGFC
B Gov (notAcFe)

. Private or unknown

Lowest Veryllow Low Medium-low Medium Mediu;n-high Hi'gh Verylhigh

Prioritization rank



Why shouldn’t we rely on habitat suitability
modeling?

* Low transferability of SDM, especially for AlS (Liu et al. 2020 Eco
Letters)

* Correlative models underestimate potential for species
establishment by

* not accounting for adaptation
* Using broadly available but not proximally causal predictor variables

* Species are relatively rare at start of invasion process

* |gnores other stages of invasion

* Need to consider spread, impact, or management interventions to create
actionable prioritizations



Best information available

Calcium-based risk assessment by Whittier et al.

* |If tied to underlying processes
can be more accurate

) &
L
------

* Improvement to zebra mussel
occurrence predictions

* Boat ramps (Rodriguez-Rey 2021
Biological Invasions)

* Calcium (Whittier et al. 2008

Frontiers in Ecology and the
Environment)

-

Relative risk

[ Very low

B Low [ Highly variable
1 High [ Not assessed

Mussel sightings
@ Zebra
® Quagga




Conclusions

« Recognize there will always be
unaccounted aspects of
establishment, spread, and
intervention feasibility in risk
assessments

» Critical to measure success
and continually reassess any
decision support tool

Stage

Spread

<€€€<

Intervention

Prevent
Risk assessment

Contain
Control

Control
Ongoing management

Detect
Eradicate




Future directions in AlS research

* Comparing invasive species dispersal
models

* Validation and improving applicability
* Hotspot analysis and evaluation of eDNA to

detect coastal invasive species and SGCN in
Red River

* Improving estimation and detection of rare
species
* Trade-offs of native and non-native species
with flow-alteration in Pecos River

* Incorporating nonstationarity under
environmental change in ecosystem dynamics




Thank you!

TEXAS
PARKS & WRKANS 4
WILDLIFE

U.S.
FISH & WILDLIFE
SERVICE
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Department
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